SIGNATURE PAGE

for

LaSalle Park/Beck's Lake Reassessment Inspection South Bend, Indiana St. Joseph County

U.S. EPA ID: IND980904379

Prepared By:

Date: 8-31-d

Mark Jaworski, Project Manager

Site Investigation Section

Indiana Department of Environmental Management

Approved by

Date: 8-31-06

Timothy Johnson, Project Manager

Site Investigation Section

Indiana Department of Environmental Management

Approved By:

Oller Date: 9-01-06

Gabriele Hauer, Chief

Site Investigation Section

Indiana Department of Environmental Management

Approved By: Lipking EPA Site Assessment Man

Date: 03/09/2007

NOTE REVISIONS TO THIS REPORT WERE SUBMITTED ON MARCH 9,2007 THEREFORE THE APPROVAL DATE REFLECTS THE DATE WHEN THE REPORT WAS APPROVED AND ACCEPTED BYEPA.

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

We make Indiana a cleaner, healthier place to live.

Mitchell E. Daniels, Jr.
Governor

Thomas W. Easterly Commissioner

100 North Senate Avenue Indianapolis, Indiana 46204 (317) 232-8603 (800) 451-6027 www.IN.gov/idem

Ms. Laura Ripley, SR-6J Site Assessment Section U.S. EPA, Region V 77 West Jackson Boulevard Chicago, Illinois 60604

Dear Ms. Ripley:

Re: LaSalle Park/Becks Lake South Bend, St. Joseph County Site Summary Report/Reassessment EPA ID: IND980904379

The current owner of LaSalle Park is the City of South Bend Department of Parks and Recreation. The park was acquired from the South Bend Redevelopment Commission in the 1960's.

According to the 1989 Screening Site Inspection Report, the LaSalle Park/Beck's Lake property was used as a dump during the 1950's. There are no records of licenses or permits for disposal activities. There is documentation that the site was previously used as an industrial waste landfill in the 1950's.

Potential concerns associated with the LaSalle Park/Beck's Lake property and surrounding areas include the presence of arsenic in surface soil samples. The Indiana Department of Environmental Management (IDEM) Brownfields Program investigation in October 2001 indicated levels of arsenic in the surface soil at the park between 5.7 and 20.9 parts per million (ppm) and in residential areas between 4.8 and 13.8 ppm

On June 16, 2003, Site Investigation staff of the IDEM conducted a reassessment of the LaSalle Park/Beck's Lake Park. A total of 22 surface soil samples were obtained from residential and public properties around the LaSalle Park/Beck's Lake site. Analytical results indicate the presence of arsenic in residential areas at levels between 1.9 ppm and 32.9 ppm. Arsenic was detected at 3.5 ppm in the background sample. Three (3) times background level (10.5 ppm) is the benchmark used for comparison of other samples. Seven (7) samples exceeded 10.5 ppm, ranging from 10.7 ppm to 32.9 ppm for arsenic.

Lead was detected in all samples (ranging from 20.7 ppm to 306 ppm). Three (3) samples were detected at a concentration higher than three times the highest background

Mr. Laura Ripley Page two

sample (181.5 ppm). Chromium was detected in all samples (ranging from 5.3 ppm to 152 ppm).

Two (2) samples, were detected at a concentration greater than three times the highest background sample (64.8 ppm). Chromium was detected (74.6 ppm and 152 ppm) in the two (2) samples listed above.

Should you have any questions regarding the contents of this correspondence, please contact me at (317) 233-2407.

Mark Jaworski

Site Investigation Section

Office of Land Quality

MJ/sb

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT REASSESSMENT INSPECTION

FOR

LASALLE PARK/BECK'S LAKE

SOUTH BEND, INDIANA

ST. JOSEPH COUNTY

U.S. EPA ID: IND980904379

AUGUST 31, 2006

Table of Contents

Section	<u>on</u>		<u>Page</u>		
I.	Introd	duction	1-1		
II.	Site I	Background	2-1		
	2.1	Introduction	2-1		
	2.2	Site Description and Location	2-1		
	2.3	Site History	2-4		
III.	Samp	oling Procedures, Field Observations, and			
	Analytical Results				
	3.1	Introduction	3-1		
	3.2	Site Representative Interview and			
		Reconnaissance Inspection	3-1		
	3.3	Sample Procedures and Analytical Results	3-1		
		3.3.1 . Soil Samples	3-1		
	3.4	Summary Tables	3-2		
IV.	Discu	ussion of Migration Pathways	4-1		
	4.1	Introduction	4-1		
	4.2	Groundwater Pathway	4-1		
	4.3	Surface Water Pathway	4-5		
		4.3.1 Drinking Water Threat			
		4.3.2 Human Food Chain Threat	4-6		
		4.3.3 Environmental Threat	4-6		
	4.4	Soil Exposure	4-7		
	4.5	Air			

Appendices

Appen	<u>idix</u>	Page
A.	IDEM Site Photographs.	. A-1
B.	Chemical Analysis Data	.B-1
C.	4-Mile Radius Map	.C-1
D.	Sensitive Environment Information.	.D-1
E.	15-Mile Surface Water Pathway Map	.E-1

List of Figures

<u>Figure</u>		<u>Page</u>
Figure 1	Site Location Map	.2-2
Figure 2	Soil Sample Location Map	3-4

List of Tables

<u>Table</u>		Page
Table 1	Soil Sample Location and Comment Table	. 3-3
Table 2	Background Level of Contaminants of Concern	4-9
Table3	Key Findings List	4-10

SECTION I INTRODUCTION

The Indiana Department of Environmental Management (IDEM) Office of Land Quality (OLQ) Site Investigation Section, under a cooperative agreement (CA) with the United States Environmental Protection Agency (U.S. EPA), Region V Office, has been funded to perform Site Investigations (consisting of Preliminary Assessments (PA), Screening Site Inspections (SSI), and Expanded Site Inspections (ESI)), for certain sites listed in the Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS). These assessments are conducted under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 (aka Superfund) and the Superfund Amendments and Reauthorization Act of 1986. The purpose of the investigation is to obtain the data necessary to identify the highest priority sites posing threats to human health and/or the environment. Sites eligible for SSIs include those sites for which the Preliminary Assessment (PA) did not conclude that 'No Further Remedial Action Planned' (NFRAP), as reflected in CERCLIS. After a site has been NFRAP'd at the SSI phase, new information regarding the site may become available and may necessitate having the site reassessed. The primary objective of the site Reassessment (RA) are:

- to collect additional data, using the Hazard ranking System (HRS), required to make the determination of whether the site should be placed on the National Priorities List (NPL);
- to identify sites that may require removal actions to address immediate threats to human health and/or the environment.

The Site Investigation section was given approval by the U.S. EPA to conduct a Reassessment at the LaSalle Park/Beck's Lake Site located in St. Joseph County, Indiana

On June 16, 2003, IDEM conducted the Reassessment at the LaSalle Park/Beck's Lake Site. Analysis of the soil samples collected for this inspection indicated some excessive levels of arsenic. Information contained within this report will be used to evaluate this site to support a site decision regarding the need for further Superfund action including the possibility for Beck's Lake Site to be considered for inclusion on the National Priorities List (NPL) of hazardous waste sites.

SECTION II

SITE BACKGROUND

2.1 Introduction

This section includes information obtained about the LaSalle Park/Beck's Lake site from the IDEM files, site visits, and other various sources.

2.2 Site Description and Location

Refer to Site Location Map on Page 2-2. The site being investigated is the residential and commercial areas surrounding LaSalle Park/ Beck's Lake. The investigation stems from an Indiana Brownfields Environmental Assessment conducted by IDEM at LaSalle Park/Beck's Lake (November 14, 2002).

The site can be found on the U.S.G.S. South Bend West, Ind. Quadrangle Topographic Map in Sections 3, 4, 9 and 10, Township 37 North, Range 2 East. The site Latitude is N41° 40′ 36″ and the Longitude is W86° 17′ 15″. The LaSalle Park/Beck's Lake property is located at 3419 West Washington Street, South Bend, St. Joseph County, Indiana. The park is situated north of Washington Street, south of Linden Avenue, east of Falcon Street, and west of Kaley Street in Portage Township. LaSalle Park's location is the NE ¼ of the NE ¼ of Section 9 and the NW ¼ of the NW ¼ of Section 10, Township 37 North, Range 2 East.

The areas of investigation for this report, include the residential and commercial/industrial areas surrounding the site. Refer to the Site Location Map on Page 2-2.

LaSalle Park consists of approximately 40 acres. A lake approximately eight (8) acres in area (Beck's Lake) and a man-made hill built during the construction of the park are

located on the eastern half of the site. Playground equipment, baseball fields, and a community center are located on the western half of the site. The western part of the subject property and the hill are well maintained; the lake is surrounded by wetland vegetation. There is some household trash, tires, etc., in and around the lake. A recreation facility (Charles J. Black, Jr. Recreation Center) with a short drive and parking area is located on the southwest part of LaSalle Park with access to Washington Street. The park also has a picnic shelter, tennis courts, basketball courts, volleyball courts, a baseball field and three (3) playground areas.

The areas surrounding the LaSalle Park/Beck's Lake property are primarily old single- and multi-family residential on typical residential-type side streets, with some commercial and light industrial properties nearby. Adjacent land to the north (across Linden Avenue) is wooded, followed by a quarry, followed by Conrail Railroad tracks. To the east is a light industrial facility (Prime Source Supply, Inc.) between LaSalle Park and Kaley Avenue. To the south is residential property. To the west/southwest is a large apartment complex followed by residential properties. It was observed that many residents south of the park have gardens in their yards. There was also a large garden to the west across Falcon Street. Streets in the area are maintained by the City of South Bend.

Other industrial facilities in the area include:

100

the former Singer Manufacturing Company property (located approximately two (2) blocks to the east of LaSalle Park, between Western Avenue and the railroad tracks and between Walnut Street and Olive Street) and Honeywell International, Inc. (located to the north of LaSalle Park, just north of the railroad tracks).

Areas of concern as potential sources of contamination include:

- The former Singer Manufacturing Company located on the western portion of the triangular shaped property (north of Western Road, east of Olive Street.
- Walnut Street, and south of the railroad tracks). The Singer Manufacturing Company property has been partially redeveloped although there are still some vacant buildings left on the site. Current facilities operating on the property include a Wells Fargo Bank, Marycrest Singer/Hammes medical offices, Bill's Place Restaurant, ABC Supply Co. (roofing, windows and siding), RediFroz (Division of Roundy's) (vacant), Safety Kleen, and the Norman Perry Trophy Shop.
- Honeywell International, Inc. (formerly the Bendix Corporation, 1923-1983; the Allied Corporation, 1983-1985; and Allied Signal, Inc., 1985-1999). The Honeywell International, Inc. facilities to the north of LaSalle Park are still operating.

2.3 Site History

According to the St. Joseph County Auditor records, the current owner of LaSalle

Park is the City of South Bend Department of Parks and Recreation. The park was acquired
from the South Bend Redevelopment Commission in the 1960's. According to the 1989

Screening Site Inspection Report, prior to construction of the park, part of the property may
have been used for housing. The St. Joseph County Assessor's Office has no records of
previous owners.

According to the 1989 Screening Site Inspection Report, the LaSalle Park/Beck's Lake property was used as a dump during the 1950s. There are no records of licenses or permits for disposal activities. A file search has revealed no past violations at the property. There is documentation that the site was previously used as an industrial waste landfill in the 1950s. However, there is no evidence that this use was in violation of local, state or federal regulations at the time the dumping occurred. Though the 1989 Report indicates that fishing was uncommon during the 1980s, during the October 16, 2001, sampling event, at least four

(4) residents of the area stopped by and indicated that they often fished in the lake.

Additionally, at a neighborhood meeting many residents indicated that fishing was common.

The western end of the park has a recreation center with a parking lot, a picnic shelter, a baseball diamond, tennis courts, basketball courts, volleyball courts, and three (3) playground areas. The man-made hill was constructed from concrete debris found on-site during construction of the park. The hill is approximately 25 feet in height and is used for sledding during winter months.

The areas to the south, west and northeast of the park are primarily residential. There are some vacant lots on the south side of Washington Street that appear to have formerly been residential. The areas to the north and east are commercial/industrial (see previous Section 2.2).

The City of South Bend intends to continue using the property as a City Park.

Vacant properties adjacent to the park may be developed as community gardens, as infill mixed housing and business development, or incorporated into adjoining residential properties.

Potential concerns associated with continued use of the LaSalle Park/Beck's Lake property and surrounding areas include the presence of arsenic in surface soil samples. The IDEM Brownfields Program investigation in October 2002 indicated levels of arsenic in the surface soil at the park between 5.7 and 20.9 parts per million (ppm) and in residential areas between 4.8 and 13.8 ppm.

SECTION III PROCEDURES, FIELD OBSERVATIONS, AND ANALYTICAL RESULTS

3.1 Introduction

This section outlines the procedures, observations, and analytical results of sampling at the LaSalle Park/Beck's Lake Site.

3.2 Site Representative Interview and Reconnaissance Inspection

As part of the Brownfields investigation, IDEM staff had visited the Site (June 13, 2001). Staff also met with and discussed the area with Mr. Anthony Dukes of the City of South Bend Department of Community and Economic Development during the 2001 sampling event. Mr. Dukes expressed concern about potential contamination at the park and adjacent properties. General site conditions were discussed at that time.

Another site visit was conducted at the time of the Site Reassessment sampling in 2003. The following observations were made:

- A) The city park and the man-made hill were well vegetated in grass.
- B) People were observed fishing in Beck's Lake.
- C) A dead goldfish was found floating along the east edge of the lake.
- D) A fence was present along the southern sector of the lake.

3.3 Sample Procedures and Analytical Results

The laboratory results from the 2005 sampling of the LaSalle Park/Beck's Lake site have been determined to be acceptable for use and meet the criteria contained in the Contract Laboratory Program (CLP). Any exceptions to the acceptance of this data will be identified in the QA/QC memorandum by the U.S. EPA chemists. (Refer to Appendix B)

3.3.1 Soil Samples

Witam'

Soil Samples were collected by IDEM at locations selected during the reconnaissance inspection to determine the extent of potential contamination. On June 16, 2003, a total of

21 surface soil samples (including one background sample), plus one duplicate sample, were obtained. The soil samples were identified as ME1MB0 through ME1MC0 and ME1MC2 through ME1MD2. The Soil Sample Location and Comments Table, Table 1 on page 3-3 depicts the sample number, location, and any comments pertaining to each sample.

Soil samples were obtained using plastic disposable scoops. The soils were homogenized in a stainless steel bowl with the plastic scoop. The homogenized material in the bowl was directly transferred into the sample jar using the plastic scoop. Latex surgical gloves were worn and discarded between the collection of each sample. Refer to the Soil Sample Location Map, Figure 1, on page 3-4 for the location of each soil sample.

3.4 Summary Tables

The laboratory results from the sampling of the LaSalle Park/Beck's Lake Site have been determined to be acceptable for use and meet the criteria contained in the Contract Laboratory Program (CLP). All samples were analyzed for metals. No other contaminants were analyzed because previous investigations (Brownfield Assessment) indicated that only metals were of concern.

A Key Findings List indicating concentrations of metals detected three times above background can be found on page 4-8. Any exceptions to the acceptance of this data will be identified in the QA/QC memorandum by the U.S. EPA chemists. Refer to Appendix B for complete chemical analysis data provided by the laboratory.

Table 1

Surface Soil Sample Location and Comments

LaSalle Park/Beck's Lake South Bend, St. Joseph County, Indiana June 16, 2003

Sample

Sampie				
ID#	EPA CLP#	Time	Address	Comments
S1	ME1MB0	10:55 AM	116 North Huey	Soil obtained form top 6 inches
S2	ME1MB1	11:30 AM	222 Linden Avenue	Soil obtained form top 6 inches
S3	ME1MB2	11:45 AM	2415 lawton Street	Soil obtained form top 6 inches
S4	ME1MB3	12:15 PM	435 South Brookfield	Soil obtained form top 6 inches
S5	ME1MB4	12:30 PM	445 Warren	Soil obtained form top 6 inches
S6	ME1MB5	12:55 PM	433 South Phillips	Soil obtained form top 6 inches
S7	ME1MB6	2:30 PM	2517 West Orange Street	Soil obtained form top 6 inches
				Soil obtained form top 6 inches,
S8	ME1MB7	2:30 PM	2517 West Orange Street	Duplicate of S7
S9	ME1MB8	3:05 PM	706 Brookfield	Soil obtained form top 6 inches
S10	MEAMPO	3:25 PM	SE corner of Bendix Park	Soil obtained form top 6 inches,
510	ME1MB9			20 ft. south of path; background
	ME1MC0		Westhaven Park (Sussex Ave.) west of Coquillard School	Soil obtained form top 6 inches,
S11				Across from 1226 Sussex;
S12	ME1MC2	11:30 AM	109 Bendix Drive	Soil obtained form top 6 inches
S13	ME1MC3	11:40 AM	126 South Camden Street	Soil obtained form top 6 inches
S14	ME1MC4	12:00 PM	138 South Dundee	Soil obtained form top 6 inches
S15	ME1MC5	12:20 PM	128 South Kentucky	Soil obtained form top 6 inches
S16	ME1MC6	12:55 PM	119 South Lake Street	Soil obtained form top 6 inches
S17	ME1MC7	1:00 PM	114 South Lake Street	Soil obtained form top 6 inches
S18	ME1MC8	2:40 PM	217 North Wellington	Soil obtained form top 6 inches
S19	ME1MC9	2:55 PM	218 North Illinois	Soil obtained form top 6 inches
S20	ME1MD0	3:15 PM	217 Kenmore	Soil obtained form top 6 inches
S21	ME1MD1	3:35 PM	102 S Falcon (LaSalle Park Homes, near Unit 111)	Soil obtained form top 6 inches
S22	ME1MD2	3:40 PM	102 S Falcon (LaSalle Park Homes, near Unit 161)	Soil obtained form top 6 inches, MS/MSD

Page 19 of 166

SECTION IV DISCUSSION OF MIGRATION PATHWAYS

4.1 Introduction

Potential migration pathways for contaminants migrating from the LaSalle Park/
Beck's Lake Site are discussed in this section. Potential contaminant migration through
groundwater, surface water (including Drinking Water Threat, Human Food Chain Threat,
and Environmental Threat), soil exposure, and air exposure are addressed.

4.2 Groundwater Pathway

According to the Hydrogeologic Atlas of Aquifers in Indiana, the LaSalle Park/
Beck's Lake site is located in the Kankakee Outwash and Lacustrine Plain within the St.

Joseph River Basin. The topography of the basin is variable. Much of the Kankakee

Outwash and Lacustrine Plain area is a poorly drained, level plain covered by fine-grained alluvium and underlain by thick outwash sand and gravel.

Four thousand feet of sandstones, siltstones, shales, limestones, and dolomites of Cambrian, Ordovician, Silurian and Devonian ages overlie Precambrian igneous and metamorphic basement rocks in the St. Joseph River Basin. Paleozoic shale and limestone are present at the bedrock surface throughout the St. Joseph River Basin in Indiana. A gently rolling bedrock surface is interspersed with a few entrenched, preglacial valleys. Bedrock is overlain by thick glacial drift throughout the basin.

The Ellsworth Shale of Late Devonian and Early Mississipian age overlies the Antrim Shale, and is present at the bedrock surface in the western part of the basin. The lower part of the formation consists of alternating layers of gray-green shale and brownish-black shale.

The upper part is a grayish-green shale that contains limestone and dolomite lenses. The Ellsworth Shale ranges in thickness from less than 40 feet to greater than 200 feet.

The St. Joseph River Basin is covered by thick, unconsolidated glacial deposits.

Although the thickness of the drift in this basin ranges from 100 feet to 500 feet, thicknesses of 200 feet to 400 feet are typical. The sand and gravel units within the drift are the major aquifers of the basin.

The St. Joseph River Basin is an area of highly variable and complex glacial deposits. These deposits are variable in extent and thickness and are widespread over the entire area. Buried preglacial bedrock valleys, where they are filled with sand and gravel, are small but significant aquifers along the Indiana-Michigan State line. In the St. Joseph River Basin, groundwater flow in the unconsolidated aquifers is generally toward the St. Joseph River and its tributaries.

The primary unconsolidated aquifers in the South Bend area are the surficial sand and gravel aquifers. These aquifers consist mostly of outwash, outwash fan deposits, isolated hills and ridges of ice-contact stratified drift, and Holocene alluvium. Thicknesses of surficial sand and gravel aquifers range from a few feet to 160 feet. Precipitation is the principal source of recharge to the surficial sand and gravel aquifers. There are several potential bedrock aquifers in the St. Joseph River Basin. However, in over half of the area the potential bedrock aquifers are more than 300 feet below the land surface. Therefore, aquifers in the unconsolidated drift are more accessible, as well as adequate for all uses.

The potential for contaminants to migrate is based on past waste disposal practices an the permeability of the soil. According to the Soil Survey of St. Joseph County, Indiana (1977), soil at the site is of the Houghton-Adrian-Palms association, which is a deep,

depressional and nearly level, very poorly drained, organic soil on lake plains, outwash plains, and till plains. Specifically, four types of soil series make up the site: Gilford Sandy Loam (Gf), Houghton Muck, drained (Ho), Maumee mucky loamy fine sand (Mg) and Made land (Ma).

The northwest corner and a small area along the southern edge of LaSalle Park are comprised of the Gilford Sandy Loam soil. The Gilford series consists of deep, very poorly drained, nearly level and depressional soils on outwash plains. These soils are mainly on broad flats and along major streams. They formed in sandy material that was deposited as glacial outwash, lacustrine sediment, or stream alluvium. In a representative profile, the surface layer is sandy loam about 14 inches thick. It is black in the upper part and very dark gray in the lower part. The subsoil is 24 inches thick. It is mottled, gray, friable sandy loam in the upper 6 inches; mottled, gray, firm heavy sandy loam in the next 12 inches; and mottled, gray, very friable loamy sand in the lower 6 inches. The underlying material is gray sand that extends to a depth of 60 inches. Gilford soils have moderately rapid permeability and a moderate available water capacity. The organic-matter content is high in the surface layer. Runoff is very slow or ponded.

The southwest corner of the park is comprised of the Maumee mucky loamy fine sand soil. The Maumee series consists of deep, very poorly drained, nearly level and depressional soils on outwash plains. These soils are mainly on low depressional flats and along stream channels. They formed in sandy glacial outwash or stream alluvium. In a representative profile, the surface layer is loamy fine sand about 14 inches thick. It is dark gray in the upper part and very dark grayish brown in the lower part. The underlying

material is dark-gray, friable fine sand in the upper 14 inches; light brownish-gray, friable fine sand in the next 4 inches; dark grayish-brown, friable sand in the next 16 inches; and gray, loose sand to a depth of 65 inches. Maumee soils have rapid permeability and a low available water capacity. The organic-matter content is high in the surface layer. Runoff is very slow or ponded.

The central part of the park is Made Land. Made Land consists of areas that are filled with cinders, slag, or a combination of these, smoothed over, and covered with soil material. Depending on the material used as fill, some areas are suitable for pasture or wildlife habitat and others are suitable for recreation facilities or building sites.

The land surrounding Beck's Lake is made up of Houghton muck, drained soil. This soil consists of deep, very poorly drained, organic soils that are nearly level or depressional. These soils are mainly on the broad Kankakee muck flats and in depressions on till plains. They formed in mixed organic material on lake plains, outwash plains, and till plains. In a representative profile, the surface layer is black muck about 9 inches thick. The layer below that is dark reddish-brown, friable muck 38 inches thick. The underlying material is gray medium and fine sand that extends to a depth of 60 inches. Houghton soils have rapid permeability and a high available water capacity. The organic-matter content is very high in the upper 54 inches. Runoff is very slow or ponded.

The City of South Bend is supplied with municipal drinking water from groundwater wells. Groundwater at LaSalle Park is presumed to flow in a northeasterly direction towards the St. Joseph River. The nearest municipal wells are located approximately three miles to the east- northeast of the site. A review of South Bend's municipal drinking water analysis

that had been obtained from IDEM's Drinking Water Branch, indicated no significant detections of Agraphy 03/03/2607 metals. Based on conversations with local water utility officials, there are no known residential water wells in the vicinity of LaSalle Park/Beck's Lake. There does not appear to be any concerns regarding the groundwater pathway. No groundwater samples were taken because there were no residential wells in the vicinity of beck's Lake Site, the nearest municipal wells indicated no significant detections of metals, and surface soil was considered to be the primary pathway of concern.

4.3 Surface Water Pathway

Because this is an urban area, the natural drainage patterns have been altered. Surface water diversions such as storm sewers and ditches may redirect some of the runoff from the site to other locations. Other than Beck's Lake within LaSalle Park, the nearest surface water body is the St. Joseph River, which enters South Bend flowing west, then turns to the north and flows into Michigan. The drainage area of the St. Joseph River is 1,800 square miles in Indiana and 4,725 square miles in Indiana and Michigan combined. The nearest U.S. Geological Survey (U.S.G.S.) streamflow-gaging station (USGS 041010000) for the St. Joseph River is located in Elkhart (approximately 15 miles east of South Bend). The station has been in operation since 1948. The average flow of the St. Joseph River at this station is 3,262.5 cubic feet per second (cfs), with annual means ranging from 1,298 cfs to 5,397 cfs, and monthly means ranging from 1,881 cfs (September) to 5,117 cfs (April). No surface water samples were taken from the St. Joseph River.

4.3.1 Drinking Water Threat

The City of South Bend supplies water to approximately 113,000 people in the city as well as some residents outside the city limits. The city draws it water from 31 groundwater wells located in nine (9) separate well fields. There are no surface water intakes in the City of South Bend. The LaSalle Park/Beck's Lake Site does not lie within the City of South Bend Wellhead Protection Area per the city's Wellhead Protection Plan and would not impact the city's drinking water supply.

4.3.2 Human Food Chain Threat

Beck's Lake is located in LaSalle Park and is considered a fishery. Soil and sediment samples obtained from the site during the Brownfield Environmental Assessment that was conducted in 2001, revealed no contaminants of concern to fish in Beck's Lake. The Indiana Fish Consumption Advisory, published by the Indiana Department of Health, IDEM, and the Indiana Department of Natural Resources, does not list Beck's Lake as an impacted fishery. There does not appear to be any significant issues regarding the human food chain.

4.3.3 Environmental Threat

The Indiana Department of Natural Resources/Division of Nature Preserves –

Heritage Program (IDNR/DNP-HP) documents sensitive environments and/or endangered or threatened species within the State of Indiana. According to the DNR, the following endangered species have been documented within one mile of the project site:

The state threatened plant Lathyrus venosus, smooth veiny pea, was documented in Section 3, Township 37 North, Range 2 East in 1929.

No other endangered, threatened, or rare species were identified for the area. No

significant concentrations of metals were detected on site that could impact any known endangered species. There does not appear to be any significant issues regarding the environmental threat.

4.4 Soil Exposure Pathway

Soil exposure is considered the most likely source of potential exposure at the LaSalle Park/Beck's Lake Site. Several surface soil samples were taken to determine the nature and extent of arsenic-contaminated soil. A total of 22 surface soil samples were obtained from residential and public properties around the LaSalle Park/Beck's Lake site. Refer to the Soil Sample Location Table on page 3-3. Analytical results indicate the presence of arsenic in residential areas at levels between 1.9 ppm and 32.9 ppm. Sample S11 was a background sample taken at a park several blocks north/northwest of the site. This sample had the same color and consistency as the rest of the samples. Arsenic was detected at 3.5 ppm in the background sample. Three (3) times background level (10.5 ppm) is the benchmark used for comparison of other samples. Seven (7) samples exceeded 10.5 ppm, ranging from 10.7 ppm to 32.9 ppm for arsenic.

Lead was detected in all samples (ranging from 20.7 ppm to 306 ppm). Three (3) samples were detected at a concentration higher than three times the highest background sample (181.5 ppm). Chromium was detected in all samples (ranging from 5.3 ppm to 152 ppm). Two (2) samples, S2 and S19, contained Chromium at a concentration greater than three times the highest background sample (64.8 ppm). Chromium was detected (74.6 ppm and 152 ppm) in S2 and S19 respectively.

The Key Findings List on page 4-10 lists all elevated concentrations of contaminants in residential soils that were found to be greater than three times background levels. Sample

results for all samples obtained can be found in Appendix B.

4.5 Air Pathway

No air samples were taken. No odors were observed during this inspection when collecting soil or sediment samples. Presently, there are no reports of adverse health effects resulting from the migration of hazardous substances through the air at this site. There does not appear to be a potential risk to nearby residents from the air pathway.

Table 2

Background Level of Contaminanats of Concern Table Shows Three (3) Times Background Table

LaSalle Park/Beck's Lake South Bend, St. Joseph County, Indiana June 16, 2003

Sample S11 (all results are in mg/kg)

Three times (3X)

04	11		
Contaminant	Level	Background Level	
Aluminum	6680 mg/kg	20040 mg/kg	
Antimony	10.9 mg/kg	32.7 mg/kg	
Arsenic	3.5 mg/kg	10.5 mg/kg	
Barium	92.1 mg/kg	276.3 mg/kg	
Beryllium	0.44 mg/kg	1.32 mg/kg	
Cadmium	0.79 mg/kg	2.37 mg/kg	
Calcium	2010 mg/kg	6030 mg/kg	
Chromium	21.6 mg/kg	64.8 mg/kg	
Cobalt	4.6 mg/kg	13.8 mg/kg	
Copper	10.8 mg/kg	32.4 mg/kg	
Iron	8450 mg/kg	25350 mg/kg	
Lead	22.0 mg/kg	66 mg/kg	
Magnesium	1370 mg/kg	4110 mg/kg	
Manganese	480 mg/kg	1440 mg/kg	
Mercury	0.060 mg/kg	0.18 mg/kg	
Nickel	7.4 mg/kg	22.2 mg/kg	
Potassium	637 mg/kg	1911 mg/kg	
Selenium	6.4 mg/kg	19.2 mg/kg	
Silver	1.8 mg/kg	5.4 mg/kg	
Sodium	38.7 mg/kg	116.1 mg/kg	
Thallium	4.5 mg/kg	13.5 mg/kg	
Vanadium	14.5 mg/kg	43.5 mg/kg	
Zinc	75.2 mg/kg	225.6 mg/kg	

ppm - parts per million

Table 2

Key Findings List - Metals

LaSalle Park/Beck's Lake South Bend, St. Joseph County, Indiana June 16, 2003

Sample	EPA CLIP			Three times (3X)
ID#	#	Contaminant	Level	Background Level
S2	ME1MB1	Chromium	74.6 ppm	64.8 ppm
S4	ME1MB3	Lead	248 ppm	181.5 ppm
S6	ME1MB5	Lead	306 ppm	181.5 ppm
S9	ME1MB8	Arsenic	10.7 ppm	10.5 ppm
		Lead	238 ppm	181.5 ppm
S15	ME1MC5	Arsenic	26.2 ppm	10.5 ppm
S16	ME1MC6	Arsenic	13 ppm	10.5 ppm
S17	ME1MC7	Arsenic	24.7 ppm	10.5 ppm
S19	ME1MC9	Arsenic	32.9 ppm	10.5 ppm
		Chromium	152 ppm	64.8 ppm
S21	ME1MD1	Arsenic	11.7 ppm	10.5 ppm
S22	ME1MD2	Arsenic	12 ppm	10.5 ppm

ppm - parts per million

Sampling Photographs

 $q_{1_{100\,\text{ph}},P}$

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB0 (S1)

Date:

June 16, 2003

Time:

10:55 AM

Weather:

Warm, sunny

Photo By:

Trevor Fuller

Description:

Surface soil sample taken from

116 N. Huey Street.

Site:

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB0 (S1)

Date:

June 16, 2003

Time:

10:55 AM

Weather:

Warm, sunny

Photo By:

Trevor Fuller

Description:

Surface soil sample taken from

116 N. Huey Street.

Page 32 of 166

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB1 (S2)

Date:

June 16, 2001

Time:

11:30 AM

Weather:

Warm, sunny

Photo By:

Trevor Fuller

Description:

Surface soil sample taken from

2227 Linden Ave.

Site:

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB1 (S2)

Date:

June 16, 2001

Time:

11:30 AM

Weather:

Warm, sunny

Photo By:

Trevor Fuller

Description:

Surface soil sample taken from

2227 Linden Ave.

Page 33 of 166

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB2 (S3)

Date:

June 16, 2003

Time:

11:45 AM

Weather:

Warm, sunny Trevor Fuller

Photo By: Description:

Surface soil sample taken from

2415 Lawton Street.

Site:

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB2 (S3)

Date:

June 16, 2003

Time:

11:45 AM

Weather:

Warm, sunny

Photo By:

Trevor Fuller

Description:

Surface soil sample taken from

2415 Lawton Street.

Page 34 of 166

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB3 (S4)

Date:

June 16, 2001

Time:

12:15 PM

Weather:

Warm, sunny Trevor Fuller

Photo By: Description:

Surface soil sample taken from

435 S. Brookfield.

Site:

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB3 (S4)

Date:

June 16, 2001

Time:

12:15 PM

Weather:

Warm, sunny

Photo By:

Trevor Fuller

Description:

Surface soil sample taken from

435 S. Brookfield.

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB4 (S5)

Date:

June 16, 2003

Time:

12:30 PM

Weather:

Warm, sunny

Photo By:

Trevor Fuller

Description:

Surface soil sample taken from

445 Warren Street.

Site:

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB4 (S5)

Date:

June 16, 2003

Time:

12:30 PM

Weather:

Warm, sunny

Photo By:

Trevor Fuller

Description:

Surface soil sample taken from

445 Warren Street.

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB5 (S6)

Date:

June 16, 2001

Time:

12:55 PM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

433 South Phillips.

Site:

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB5 (S6)

Date:

June 16, 2001

Time:

12:55 PM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

433 South Phillips.

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB6 (S7)

Date:

June 16, 2003

Time:

2:30 PM

Weather:

Warm, sunny

Photo By:

Trevor Fuller

Description:

Surface soil sample taken from

2517 West Orange Street.

Site:

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB6 (S7)

Date:

June 16, 2003

Time:

2:30 PM

Weather:

Warm, sunny

Photo By:

Trevor Fuller

Description:

Surface soil sample taken from

2517 West Orange Street.

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB7 (S8)

Date:

June 16, 2001

Time:

2:30 PM

Weather:

Warm, sunny

Photo By: Description:

<u>Trevor Fuller</u> <u>Surface soil sample taken from</u>

2517 West Orange Street.

Site:

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB7 (S8)

Date:

June 16, 2001

Time:

2:30 PM

Weather:

Warm, sunny

Photo By:

Trevor Fuller

Description:

Surface soil sample taken from

2517 West Orange Street.

Page 39 of 166

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB8 (S9)

Date:

June 16, 2003

Time:

3:05 PM

Weather:

Warm, sunny

Photo By:

Trevor Fuller

Description:

Surface soil sample taken from

706 Brookfield.

Site:

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB8 (S9)

Date:

June 16, 2003

Time:

3:05 PM

Weather:

Warm, sunny

Photo By:

Trevor Fuller

Description:

Surface soil sample taken from

706 Brookfield.

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB9 (S10)

Date:

June 16, 2001

Time:

3:25 PM

Weather:

Warm, sunny

Photo By:

Trevor Fuller

Description:

Surface soil sample taken from

Southeast corner of Bendix Park.

Site:

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MB9 (S10)

Date:

June 16, 2001

Time:

3:25 PM

Weather:

Warm, sunny

Photo By:

Trevor Fuller

Description:

Surface soil sample taken from

Southeast corner of Bendix Park.

Page 41 of 166

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MC0 (S11)

Date:

June 16, 2003

Time:

3:45 PM

Weather:

Warm, sunny

Photo By:

Trevor Fuller

Description:

Surface soil sample taken from

Park on Sussex Ave. west of Alex

Coquillard Elementary School.

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MC0 (S11)

Date:

June 16, 2003

Time:

3:45 PM

Weather:

Warm, sunny

Photo By:

Trevor Fuller

Description:

Surface soil sample taken from

Park on Sussex Ave. west of Alex

Coquillard Elementary School.

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MC2 (S12)

Date:

June 16, 2001

Time:

11:30 AM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

109 Bendix Drive.

Site:

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MC2 (S12)

Date:

June 16, 2001

Time:

11:30 AM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

109 Bendix Drive.

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MC3 (S13)

Date:

June 16, 2003

Time:

11:40 AM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

126 S. Camden Street.

Site:

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MC3 (S13)

Date:

June 16, 2003

Time:

11:40 AM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

126 S. Camden Street.

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MC4 (S14)

Date:

June 16, 2001

Time:

12:00 PM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

138 South Dundee.

Site:

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MC4 (S14)

Date:

June 16, 2001

Time:

12:00 PM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

138 South Dundee.

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MC5 (S15)

Date:

June 16, 2003

Time:

12:20 PM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

138 South Kentucky.

Site:

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MC5 (S15)

Date:

June 16, 2003

Time:

12:20 PM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

138 South Kentucky.

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MC6 (S16)

Date:

June 16, 2001

Time:

12:55 PM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description: Surface

Surface soil sample taken from

118 South Lake Street.

Site:

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MC6 (S16)

Date:

June 16, 2001

Time:

12:55 PM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

118 South Lake Street.

Page 47 of 166

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MC7 (S17)

Date:

June 16, 2003

Time:

1:00 PM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

114 S. Lake Street.

Site:

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MC7 (S17)

Date:

June 16, 2003

Time:

1:00 PM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

114 S. Lake Street.

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MC8 (S18)

Date:

June 16, 2001

Time:

2:40 PM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

217 North Wellington.

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MC8 (S18)

Date:

June 16, 2001

Time:

2:40 PM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

217 North Wellington.

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MC9 (S19)

Date:

June 16, 2003

Time:

2:55 PM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

218 North Illinois.

Site:

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MC9 (S19)

Date:

June 16, 2003

Time:

2:55 PM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

218 North Illinois.

Page 50 of 166

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MD0 (S20)

Date:

June 16, 2001

Time:

3:15 PM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

217 Kenmore.

Site:

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MD0 (S20)

Date:

June 16, 2001

Time:

3:15 PM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

217 Kenmore.

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MD1 (S21)

Date:

June 16, 2003

Time:

3:35 PM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

102 South Falcon.

Site:

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MD1 (S21)

Date:

June 16, 2003

Time:

3:35 PM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

102 South Falcon.

LaSalle Park/Beck's Lake

South Bend, IN

Sample #:

ME1MD2 (S22)

Date:

June 16, 2001

Time:

3:40 PM

Weather:

Warm, sunny

Photo By:

Dan Chesterson

Description:

Surface soil sample taken from

102 South Falcon.

A-140041b

Chemical Analysis

DATE:	July 21,	2003							
	Office o P.O. Box 100 N. S	f Environ 6015 enate Ave	mental/Sit	_	ment gation Secti	lon			
Attn:	Mark Jaw	orski							
SITE NAME:	Becks La	ke							
CASE NO	LAB	NO # OF	SAMPLES	SDG	MATRIX				
31852	Ceimic		2	ME1MB9	Soil				
					·				
Upon receipt of data, please check each package for completeness and note any missing deliverables below.									
Send this form back to Sylvia Griffin, Data Management Coordinator after filling in the blanks below.									
Data Received	by:		Date:						
PROBLEMS:									
Please indicated		_	=		re are any				

FROM: U.S. EPA Region V

Al Habile.

Central Regional Laboratory 536 S. Clark, 10th Floor

Received by Data Management Coordinator, CRL for file.

Date:__

Signature:____

CHICAGO, IL 60605

Sent By: Eva M. Dixon, Sr. Data Specialist

ESAT

RECEIVED

JUL 2 4 2003

DEPARTMENT OF ENVIRONMENT \L MAMAGENTINT OFFICE OF LAND QUALITY

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION V

DATE:	7/17/03
SUBJECT:	Review of Data
	Received for review on 7/14/03
FROM:	Stephen L. Ostrodka, Chief (SMF-4J) Superfund Field Services Section
TO:	Data User:IDEM
We have rev	iewed the data by CADRE for the following case:
SITE NAME	E: Becks Lake (IN)
CASE NUM	BER: 31852 SDG NUMBER: ME1MB9
Number and	Type of Samples: 2 soils
Sample Num	bers: ME1MB9, C0
Laboratory:	Ceimic Hrs. for Review:
Following are	e our findings:
	vel 2 narrative. It is an assembly of CADRE files provided to ESAT. The data

CC: Cecilia Moore Region 5 TOPO Mail Code: SMF-4J Case: SDG: Page 2 of 5 Site: Laboratory:

Below is a summary of the out-of-control audits and the possible effects on the data for this case:

NUMBER (##) MATRIX samples, numbered ##, were collected on DATE. The lab received the samples on DATE in good condition. All samples were analyzed for metals and cyanide. All samples were analyzed using the CLP SOW ILM05.2 analysis procedures.

Mercury analysis was performed using a Cold Vapor AA Technique. Cyanide analysis was performed using the MIDI Distillation procedure. The remaining inorganic analyses were performed using an Inductively Coupled Plasma-Atomic Emission Spectrometric (ICP-AES) procedure.

Assembled by: Stephen Connet

Date: 7/17/03

Case: SDG: Page 3 of 5

Site: Laboratory:

1. HOLDING TIME:

Qualification: Holding Time Protocol: INORG

DC-10 The following inorganic soil samples were reviewed for holding time violations using criteria

developed for water samples.

ME1MB9, ME1MC0, ME1MC0D, ME1MC0S

2. CALIBRATIONS:

Qualification: Calibrations Protocol: INORG

No defects found.

No defects found.

3. BLANKS:

Qualification: Laboratory Blanks Protocol: INORG

No defects found.

4. MATRIX SPIKE/MATRIX SPIKE DUPLICATE AND LAB CONTROL SAMPLE:

Qualification: Matrix Spikes Protocol: INORG

No defects found.

Qualification: Laboratory Control Sample Protocol: INORG

No defects found.

5. LABORATORY AND FIELD DUPLICATE:

Qualification: Duplicates Protocol: INORG

No defects found.

6. ICP ANALYSIS:

Qualification: Serial Dilution Protocol: INORG

DC-4 The following inorganic samples are associated with an ICP serial dilution percent difference which is not in criteria. The serial dilution result is greater than the sample result, indicating a potential negative interference. The data must be qualified using professional

judgement. Hits and non-detects are not flagged.

Beryllium

MEIMB9, MEIMC0

Cadmium

Assembled by: Stephen Connet

Date: 7/17/03

Case: SDG: Page 4 of 5 Site: Laboratory:

ME1MB9, ME1MC0

Calcium

ME1MB9, ME1MC0

Cobalt

ME1MB9, ME1MC0

Copper

ME1MB9, ME1MC0

Magnesium

ME1MB9, ME1MC0

Potassium

ME1MB9, ME1MC0

DC-6 The following inorganic samples are associated with an ICP serial dilution percent difference which is not in criteria. The serial dilution result is a non-detect. Use professional judgement to qualify sample data.

Sodium

ME1MB9, ME1MC0

Qualification: Interference Check Sample Protocol: INORG

No defects found.

7. GFAA ANALYSIS:

No GFAA analyses were performed for this case.

8. SAMPLE RESULTS:

Qualification: Sample Result Verification Protocol: INORG

No defects found.

Qualification: CADRE Reserved Protocol: INORG

DC-2 Verification of non-detected results and assignment of "U" qualifier when the reported value is less than detection limit.

ME1MB9, ME1MC0, ME1MC0D, PBS01

Assembled by: Stephen Connet Date: 7/17/03

Analytical Results (Qualified Data)

Page ____ of ____

Case #: 51852

SDG : ME1MB9

Site:

BECKS LAKE

CEIMIC

Lab.:

Number of Soil Samples: 2 Number of Water Samples: 0

Reviewer : Date :

Sample Number :	ME1MB9		ME1MC0		ME1MC0D		ME1MC0S			
Sampling Location :	S10		S11		S11		S11			
Matrix :	Soil		Soil		Soil		Soil			1
Units :	mg/Kg		mg/Kg		mg/Kg		mg/Kg			
Date Sampled :	06/16/2003		06/16/2003		06/16/2003		06/16/2003			
Time Sampled	13:25		13:45		13:45		13:45			
%Solids :	80.6		91.8		93.7		91.8			
Dilution Factor:	1.0		1.0		1.0		1.0			
ANALYTE	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMIN'JM	5060		6680		5680		7280			
ANTIMONY > 2	10.3	U	10.9	U:	10.9	U.	3.9	34 P. 3		
ARSENIC	1.9		3.5		3.3		10.2			
BARIUM	49.0		92.1	200	84.2		443			
BERYLL UM	0.36		0.44		0.40		8.7			
CADMIUM	0.80	*	0.79				9.1	2453		100
CALCIUM	2020		2010		1810		1910			
CHROMIUM	12.8		21.6		20.6		56.0			
COBALT	1.5		4.6		4.1		90.8	Ì		
COPPER:	13.0	74	10.8	100	10.2		54.0		4 (33)	
IRON	3580		8450		7310		8820			
LEAD * Set 1	7 ty 60.5	200	22.0	450	20.7		25.2			
MAGNESIUM	748		1370		1190		1300			
MANGANESE SILLAR STATE	69.8		480	372	428	111	546			
MERCURY	0.080	7. V V 7000 1200 00000000000000000000000000000	0.060	had out to estade and	0.070	Oroman an ann	0.59	***************************************		
NICKEL	4.5	1	7.4		F1446_6.3		94.1	dat		. 1345
POTASSIUM	243		637	*****	549		670			
SELENIUM: 1911	16.0	ָט	6.4	U	6.4	U	385.55 5.8			11.50
SILVER	1.7	U	1.8	U	1.8	U	7.1	İ		
SODIUM	39.5		38.7		40.9	1986	37.1			
THALLIUM	4.3	U	4.5	U	4.5	U	9.5			
VANADIUM	7.8		14.5		12.5		193.9		a de de la companya d	
ZINC	47.8		75.2		65.2		159			

DISCLAIMER: This package has been electronically assessed as an added service to our customer. It has not been either validated or approved by Region 5 and any subsequent use by the data user is strictly at the risk of the data user. Region 5 assumes no responsibility for use of unvalidated data.

USEPA Contract Laboratory Program Inorganic Traffic Report & Chain of Custody Record

SER NO MEIMBO/HEIMBG Case No: 31852 2

		11:20	S- 6/16/03	S	5021510 (Ice Only) (1)	ICP/MS (21)	M/G	Soil (0"-12")/	ME1MB1
		10:55	S: 6/16/03	S1	5021509 (Ice Only) (1)	ICP/MS (21)	M/G	Soil (0"-12")/ Dan Chesterson	ME1MB0
ORGANIC FOR LAB USE ONLY SAMPLE No. Sample Condition On Rec	ORGANIC SAMPLE No.	ME OLLECT	SAMPLE COLLECT DATE/TIME	STATION	TAG No./ PRESERVATIVE/ Bottles	ANALYSIS/ TURNAROUND	CONC/	MATRIX SAMPLER	INORGANIC SAMPLE No.
	De:	Unit Price:				4			
6/18/	Lab Contract No:	Lab Cor	/	03		3		(401) /82-8900	
2	. To:	Transfer To:			2	2	2882	Narragansett RI 02882	-
<u> </u>	# 	10:00 Unit Price:	6118	Zuzeth de	man F. Church 6/17/03 1:30/ Trizaleth Astrip	Am XF.C	7	Ceimic Corporation	Shipped to:
68W02063	Lab Contract No:	Lab Co		Received By	(Date / Time)	Relinquished By		834176501924	Airbill:
	For Lab Use Only	For La		Sampler Signature:	dy Record	Chain of Custody Record		6/17/03 FedEx	Date Shipped: Carrier Name:

ME1MB2

Soit (0"-12")/ Dan Chesterson

ICP/MS (21)

5021510 (Ice Only) (1)

SS

S: 6/16/03

11:30

ME1MB3

Soil (0"-12")/ Dan Chesterson

M/G

ICP/MS (21)

5021512 (Ice Only) (1)

2

6/16/03

12:15

Dan Chestersor Soil (0"-12")/

M/G

ICP/MS (21)

5021511 (Ice Only) (1)

S

ÿ

6/16/03

11:45

ecelpt

Page 62 of 166

ICP/MS = CLP TAL Total Metals ICP/MS Concentration: L = Low, M = Low/Medium, H = High

Analysis Key:

Shipment for Case Complete?N

= last sample in SDG

NEINBO

Additional Sampler Signature(s)

Type/Designate:

Composite = C, Grab = G

Custody Seal Intact?

✓ Shipment iced?

Upon Receipt EA

Chain of Custody Seal Number:

20409

20410

Sample(s) to be used for laboratory QC:

ME1MB9

Soil (0"-12")/ Dan Chesterson

ICP/MS (21)

5021518 (Ice Only) (1)

S10

S: 6/16/03

13:25

Dan Chesterson Soil (0"-12")/

<u>M</u> ଜ

ICP/MS (21)

5021517 (Ice Only) (1)

98

Ċύ

6/16/03

13:05

ME1MB8

ME1MB7

Dan Chesterson

Soil (0"-12")/

M/G

ICP/MS (21)

5021516 (Ice Only) (1)

SS

S: 6/16/03

14:30

ME1MB6

Dan Chesterson

Soil (0"-12")/ Dan Chesterson

M/G

ICP/MS (21)

5021515 (Ice Only) (1)

S7

S: 6/16/03

14:30

ME1MB5

M ଜ

ICP/MS (21)

5021514 (Ice Only) (1)

S

ö

6/16/03

12:55

Original Documents an

COPY

included in CSF

MEINBO

ME1MB4

Dan Chesterson Soil (0"-12")/

Soil (0"-12")/

M G

ICP/MS (21)

5021513 (Ice Only) (1)

S

Ś

6/16/03

12:30

5-292371269-053103-0001

y results. Requests for preliminary results will increase analytical costs.

Management Office, 2000 Edmund Halley Dr., Reston, VA. 20191-3400 Phone 7.

PR provides preling Send Copy to: S TR Number:

≣ •64-9348 Fax 703/264-9222

F2V8.1.046

ME1MC0	INORGANIC SAMPLE No.				đ to:		Date Shipped: Carrier Name:			
Soil (0"-12")/ Dan Chesterson	MATRIX/ SAMPLER		(401) 782-8900	10 Dean Knauss Drive Narragansett RI 02882	Ceimic Corporation	834176501024	6/17/03 EadEv	,	Inorganic	USEPA Co
M/G	CONC/			rive 882	_		 		Traffi	ntract
ICP/MS (21)	ANALYSIS/ TURNAROUND	4	ω	2	1 Linder	Relinquished By	Chain of Custody Record		c Report & Ci	USEPA Contract Laboratory Program
5021519 (Ice Only) (1)	TAG No./ PRESERVATIVE/ Bottles		\ \{\frac{1}{4}	7)	hat Chint Carleson Excepted	(Date / Time)	y Record		Inorganic Traffic Report & Chain of Custody Record	rogram
S11	STATION		6/18/03	C	Euzaletto A	Received By	Sampler Signature:		Record	
S: 6/16/03	SAMPLE COLLECT DATE/TIME			C	Astiva 61180030	(Date / Time)				
13:45	ECT	Unit Price:	Lab Contract No:	Transfer To:	\$103 \D:00 Unit Price:	Lab Contract No:	For Lab	SDG No:	DAS No:	Case No:
	ORGANIC SAMPLE No.		act No:	<u>o</u> .	 	act No:	For Lab Use Only	SDG NO: MEIMBG		
	ORGANIC FOR LAB USE ONLY SAMPLE No. Sample Condition On Receipt	Z.	2/8/12	43/	R/S	63W02063		ا		31852
' 1	Doc.		62			-			3	

			al Metals ICP/MS	ICP/MS - CLP TAL Total Metals ICP/MS
Custody Seal Intact? Shipment load?		Type/Designate: Composite ≈ C, Grab = G	Concentration: L = Low, M = Low/Medium, H = High	Analysis Key:
Chain of Custody Seal Number:	Coolar Temperature Upon Receipt	Additional Sampler Signature(s):	Sample(s) to be used for laboratory QC:	Shipment for Case Complete?N

TR Number: 5-292371269-053103-0001

PR provides preliminary results. Requests for preliminary results will increase analytical costs.

Send Copy to: Sarrile Management Office, 2000 Edmund Halley Dr., Reston, VA. 20191-3400 Phone 70 TR Number:

F2V5.1.04 ___ge 2 of 2

SDG Narrative

Laboratory Name: Ceimic Corporation

Case No.: 31852 SDG No.: ME1MB9 Contract: 68W02063

Ceimic Project No.: 030765

The following ILM05.2 (ICP-AES) two soil samples were received at Ceimic Corporation on June 18, 2003:

EPA ID	Ceimic ID
ME1MB9	030765-01
ME1MC0	030765-02
ME1MC0D	030765-02D
ME1MC0S	030765-02S

Comments on Data Package

The samples for case 31852 were received for ICP-AES and mercury analysis. This is despite the fact that the Traffic Reports / Chains of Custody indicate the need for ICP-MS analysis. Additionally, the sample tags indicate that mercury analysis was not to be performed; but Ceimic was asked to ignore the indication on the tags after consulting with Jessica Brown of the Sample Management Office.

The above samples were digested and analyzed in accordance with the Inorganic Statement of Work (SOW) ILM05.2.

QA/QC Samples:

No sample in this SDG was indicated for QC analysis. Ceimic decided to perform matrix spike and duplicate analysis on sample ME1MC0, and informed Ms. Brown of this decision. The choice of sample was made after receipt, but before digestion.

Serial dilution was performed on sample ME1MB9. A post-digestion spike of sample ME1MC0 was required for antimony and selenium.

Observations:

Observations:

A "U" flag in the C column on the sample result forms (Form I-IN) indicates that the concentration of that analyte in the sample is undetected at the method detection limit (MDL). If analytes are detected between the Contract Required Detection Limits (CRDL) and the MDL, a "J" flag is shown in the C column on the Form I-IN.

The "N" qualifier applied to Sb and Se. The "E" qualifier applies to Ca, Cu, and Mg.

Deviations from Contract:

None.

End of Case Narrative.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Ryan C. Montalbano

Supervisor, Inorganic Laboratories

07/08/03

Date

SDG No: MELMB9

COVER PAGE

NRAS No.:

Name:

Lab Code:

Ceimic Corporation

Case No:

31852

CEIMIC

Contract: 68-W-02-063

SOW No.:	ILM05.2		
	EPA Sample No.	Lab Sample ID	
	ME1MB9	030765-01	
	ME1MC0	030765-02	
	ME1MC0D	030765-02D	
	ME1MC0S	030765-02S	
Minut.			
			ICP-AES ICP-MS
Were TCP-A	ES and ICP-MS interelement corrections	(Yes/No)	YES NO
applied?		(200,1.0,	
	ES and ICP-MS background corrections	(Yes/No)	YES NO
applied?			
_	s, were raw data generated before cation of background corrections?	(Yes/No)	NO NO
applic	cation of background coffections:	(Ies/No)	
Comments:			
			
Toertifu	that this data package is in compliance wi	ith the terms and condition	og of the
	both technically and for completeness, for		
above. Re	elease of the data contained in this hardco	opy data package and in the	
	on diskette (or via an alternate means of		
	on, if approved in advance by USEPA) has been the Manager's designee, as verified by the		oratory
	. 7		
	-6 0 pla + 111	Dane 356-13-	
Signature:	Me Mindellen Na	Ryan Montalbano	
	Fig C Mithum Na		
Date:		itle: Inorganic Labora	tory Supervisor

1A-IN

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

P

P

P P

₽

CV

P

P

P

P

P

P

P

E

E

N

· · · · · · · · · · · · · · · · · · ·							ME	1MB9
Lab Name:	Ceimic C	orporatio	n	Contract: 6	8-W-0	2-063		
Lab Code:	CEIMIC	Case No	.: 31852	NRAS No.:			SDG NO.:	ME1MB9
Matrix (so	il/water):	SOIL		Lab Sample ID:	0307	65-01		
Level (low	/med):	FOM		Date Received:	6/18	/2003		
& Solids:	80.	. 6						
Concentrat	ion Units (ug/L or mg	/kg dry weight):	MG/KG	_			
	CAS No	0.	Analyte	Concentration	C	Q	м	
	7429-	90-5	Aluminum	5060			P	1
	7440-	36-0	Antimony	10.3	Ū	N	P	1
	7440-	38-2	Arsenic	1.9	J		P	1
	7440-	39-3	Barium	49.0			P	1
	7440-	41-7	Beryllium	0.36	J	······································	P	1
	7440-	43-9	Cadmium	0.80	J		P	1
	7440-	70-2	Calcium	2020		E	P	1
	7440-	47-3	Chromium	12.8			P	1
	7440-	48-4	Cobalt	1.5	J		P	1

13.0

3580

60.5

748

69.8

0.079

4.5

243

6.0

1.7

39.5

4.3

J

J

σ

σ

J

σ

J

7440-50-8

7439-89-6

7439-92-1

7439-95-4

7439-96-5

7439-97-6

7440-02-0

7440-09-7

7782-49-2

7440-22-4

7440-23-5

7440-28-0

C ments:

Copper

Magnesium

Manganese

Potassium

Selenium

Silver

Sodium

Thallium

Mercury

Nickel

Iron

Lead

7440-62-2 Vanadium 7.8 P 7440-66-6 Zinc 47.8 n/a medium Color Before: brown Clarity Before: Texture: yellow Color After: Clarity After: n/a Artifacts:

> Page 67 of 166 105.2 8 Form IA-IN

1A-IN

INORGANIC ANALYSIS DATA SHEET

						EPA SA	MPLE NO.
Mine IP						ME	LMC0
b Name: Cei	mic Corporati	on	Contract: 6	8-W-C	02-063		
b Code: CEI	MICCase	No.: 31852	NRAS No.:		SD	G NO.:	ME1MB9
trix (soil/wa	ter): SOIL		Lab Sample ID:	0307	765-02		
vel (low/med)	LOW		Date Received:	6/18	/2003		
Solids:	91.8						
— ncentration Un	nits (ug/L or m	mg/kg dry weight):	MG/KG				
ī	CAS No.	Analyte	Concentration		Q	,,,	7
					1	M P	
	7429-90-5	Aluminum	6680	+	1	P	{
	7440-36-0	Antimony	10.9	Ū	N	P P	4
	7440-38-2 7440-39-3	Barium	3.5 92.1	 	<u> </u>	P	
ŀ	7440-39-3			J	<u> </u>	P	ł
ì	7440-41-7	Beryllium Cadmium	0.44	J		P	}
ŀ	7440-70-2	Calcium	2010	+-	E	P	-
ŀ	7440-47-3	Chromium	21.6	 		P	-
ŀ	7440-48-4	Cobalt	4.6	J		P	1
	7440-50-8	Copper	10.8	+ -	E	P P	1
4 m/*	7439-89-6	Iron	8450	+-		P	1
	7439-92-1	Lead	22.0	 		P	-
	7439-95-4	Magnesium	1370	+	E	l P	1
	7439-96-5	Manganese	480			P	1
	7439-97-6	Mercury	0.062	J		CV	†
	7440-02-0	Nickel	7.4	+	·	P	†
	7440-09-7	Potassium	637	J		P	1
	7782-49-2	Selenium	6.4	U	N	P	
	7440-22-4	Silver	1.8	σ		P	1
	7440-23-5	Sodium	38.7	J		P	
	7440-28-0	Thallium	4.5	Ū		P	1
			14.5	+	 		4
	7440-62-2	Vanadium	74.5	1		P	

3-IN **BLANKS**

Lab Name: Ceimic Corporation Contract: 68-W-02-063

Lab Code:

CEIMIC

Case No.: 31852 NRAS No.:

SDG NO.: ME1MB9

Preparation Blank Matrix (soil/water):

SOIL

Preparation Blank Concentration Units (ug/L or mg/kg):

MG/KG

	Initial Calibration Blank(ug/L				Continuing Cal Blank (u		tion		Preparation Blank	n.	
Analyte		С	1	С	2	C	3	С		С	М
Aluminum	200.0	۵	26.7	J	200.0	ס	40.7	J	6.470	J	P
Antimony	60.0	ט	60.0	σ	60.0	ਹ	60.0	Ū	12.000	ט	P
Arsenic	15.0	ט	15.0	ΰ	15.0	Ū	15.0	ט	3.000	Ū	P
Barium	200.0	Ū	1.6	J	200.0	ਹ	1.1	J	40.000	ָּט	P
Beryllium	5.0	ט	0.2	J	5.0	υ	0.3	J	1.000	ט	P
Cadmium	5.0	ט	0.3	J	5.0	U	0.2	J	1.000	ט	P
Calcium	5000.0	ט	5000.0	Ū	5000.0	ט	41.5	J	12.748	J	P
Chromium	10.0	ט	10.0	Ū	10.0	υ	10.0	ט	2.000	ט	P
Cobalt	50.0	Ū	0.7	J	50.0	<u>ט</u>	50.0	σ	10.000	Ū	P
Copper	25.0	ט	25.0	Ū	25.0	U	0.8	J	5.000	Ū	P
nc	100.0	Ū	100.0	σ	100.0	υ	100.0	ט	20.000	U	P
Head	10.0	Ū	10.0	Ū	10.0	ט	10.0	ט	0.258	J	P
Magnesiwn	5000.0	ַ	36.6	J	5000.0	Ū	30.2	J	1000.000	Ū	P
Manganese	15.0	ט	15.0	υ	15.0	ט	15.0	ם	0.370	J	P
Mercury									0.100	Ū	cv
Nickel	40.0	ซ	1.1	J	40.0	Ū	40.0	Ū	0.253	J	P
Potassiwn	72.9	J	58.6	J	5000.0	ט	63.2	J	17.525	J	P
Selenium	-6.7	J	35.0	σ	35.0	σ	35.0	σ	-1.103	J	P
Silver	10.0	υ	0.7	J	10.0	Ū	0.8	J	2.000	Ū	P
Sodium	-20.4	J	5000.0	Ū	5000.0	U	5000.0	ט	19.601	J	P
Thallium	25.0	U	25.0	Ū	25.0	Ū	25.0	Ū	0.323	J	P
Vanadium	50.0	ַ ט	50.0	ט	50.0	Ū	50.0	ט	10.000	ס	P
Zinc	60.0	ט	60.0	υ	60.0	υ	60.0	ט	12.000	Ū	P

3-IN BLANKS

ab Name:	Ceimic Corporation	Contract:	68-W-02-063	

Lab Code: CEIMIC Case No.: 31852 NRAS No.: SDG NO.: ME1MB9

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

Analyte	Initial Calibration Blank(ug/L)		Continuing Calibration Blank (ug/L)							
	С	1	С	2	С	3	С		С	М
Aluminum		44.4	J							P
Antimony		60.0	บ							P
Arsenic		15.0	U			······································		:		P
Barium		1.3	J						Î	P
Beryllium		0.3	J							P
Cadmium		5.0	Ū							P
Calcium		38.1	J							P
Chromium		10.0	ט							P
Cobalt		50.0	ט							P
Copper		25.0	ט							P
n		100.0	ਹ							P
head		10.0	ט							P
Magnesium		33.2	J							P
Manganese		15.0	Ū	***						P
Nickel		1.2	J							P
Potassium		5000.0	Ū							P
S e lenium		35.0	ט							P
Silver		10.0	ט							₽
Sodium		5000.0	<u>ס</u>							P
Thallium		25.0	ש				\Box			P
Vanadium		50.0	<u>ט</u>							P
Zinc		60.0	ט		i i					₽

3-IN BLANKS

Lab Name: Ceimic Corporation Contract: 68-W-02-063

Lab Code: CEIMIC Case No.: 31852 NRAS No.: SDG NO.: ME1MB9

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial Calibration Blank(ug/L)			Preparation Blank							
Analyte		С	1	С	2	С	3	С		С	М
Mercury	0.200	ט	0.200	ט	0.200	ט					CV

4A-IN

ICP-AES INTERFERENCE CHECK SAMPLE

Law Name: Ceimic Corporation Contract: 68-W-02-063

Lab Code: CEIMIC Case No.: 31852 NRAS No.: SDG NO.: ME1MB9

ICP-AES Instrument ID: PE Optima ICP ICS Source: PARTA(1002)/B(0596)

Concentration Units: ug/L

Analyte	T	rue	In	Found	Final Found					
	Sol.A	Sol AB	Sol.A	%R	Sol AB	%R	Sol.A	%R	Sol.AB	%R
Aluminum	241700	241700	247164.70	102	248243.80	103	42903.09	100	242999.09	101
Antimony	0	568	-20.12		570.50	100	-17.08		531.93	94
Arsenic	0	94	-7.88		84.83	90	-5.08		82.82	88
Barium	0	503	2.16		523.99	104	1.99		507.83	101
Beryllium	0	467	-0.14		506.34	108	0.06		489.45	105
Cadmium	0	936	3.10		992.04	106	2.60		926.23	99
Calcium	233100	232200	252881.41	108	253389.41	109	49751.70	107	251470.50	108
Chromium	37	485	38.56	104	518.48	107	37.49	101	503.07	104
Cobalt	0	463	3.20		488.96	106	2.67		469.03	101
C per	0	511	4.40		513.78	101	4.44		499.70	98
Iron	93880	93680	99450.84	106	99550.02	106	96904.23	103	96792.39	103
Lead	0	52	-10.08		39.55	76	-8.14		38.25	74
Magnesium	247700	246400	254099.30	103	254279.91	103	47221.00	100	247197.80	100
Manganese	0	486	26.07		522.14	107	25.26		507.20	104
Nickel	0	912	7.78		945.34	104	7.03	1.31.	907.90	100
Potassium	0		107.20		112.74		101.95		121.18	
Selenium	0	47	16.41		53.67	114	2.34		46.57	99
Silver	0	203	0.25		202.80	100	0.67		198.20	98
Sodium	0		658.23		644.00		635.94		627.18	
Thallium	0	92	-15.01		82.77	90	-14.73		88.22	96
Vanadium	0	471	14.43	-	503.14	107	13.44	_	490.01	104
Zinc	0	975	45.51		1022.00	105	41.45		952.98	98

4A-IN

ICP-AES INTERFERENCE CHECK SAMPLE

Lab Name: Ceimic Corporation Contract: 68-W-02-063

Lab Code: CEIMIC Case No.: 31852 NRAS No.: SDG NO.: ME1MB9

ICP-AES Instrument ID: PE Optima ICP ICS Source: PARTA(1002)/B(0596)

Concentration Units: ug/L

	T	rue	3	[nitial	Found		F	inal	Found	
Analyte	Sol.A	Sol AB	Sol.A	%R	Sol AB	%R	Sol.A	%R	Sol.AB	%R
Alum:inum	241700	241700					40692.41	100	241425.70	100
Antimony	0	568	···· • · · · · · · · · · · · · · · · ·	Ī			-18.25		532.87	94
Arsenic	0	94				1	-4.36		83.24	89
Barium	0	503				1	2.15		505.43	100
Beryllium	0	467				Ī	0.12		488.63	105
Cadmium	0	936				Î	2.55		917.17	98
Calcium	233100	232200		T		Î	49513.91	107	249239.00	107
Chromium	37	485				1	36.66	99	501.24	103
Cobalt	0	463					2.28		469.02	101
C er	0	511					3.27		497.96	97
Iron	93880	93680					96341.72	103	96174.61	103
Lead	0	52		Ī			-9.52		37.22	72
Magnesium	247700	246400					46328.09	99	245818.70	100
Manganese	0	486					25.34		506.94	104
Nickel	0	912			ĺ		6.99		904.06	99
Potassium	0						119.23		110.09	
Selenium	0	47					2.84		48.21	103
Silver	0	203					0.10		197.10	97
Sodium	0					Ī	638.50		622.80	
Thallium	0	92]	Î	-14.32		83.94	91
Vanadium	0	471					15.89		491.81	104
Zinc	0	975				Î	40.15		942.81	97

USEPA-CLP 5A-IN

MATRIX SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

ME:	7	M	~	Λ	C

ab	Name:	Ceimic	Corporation	Contract:	68-W-02-063
a	Memie.	CGTHITC	COLDOTACTOR	contract.	00-M-U2-U03

Lab Code: CEIMIC Case No.: 31852 NRAS No.: SDG NO.: ME1MB9

Matrix (soil/water): SOIL Level (low/med): LOW

% Solids for Sample: 91.8

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	%R	Q	м
Aluminum		7281.0278		6675.3608		0.00	0		NR
Antimony	75 - 125	3.8891	J	10.8932	ס	18.16	21	N	P
Arsenic	75 - 125	10.1622		3.4766		7.26	92		P
Barium	75 - 125	442.6343		92.0676		363.11	97		P
Beryllium	75 - 125	8.7129		0.4381	J	9.08	91		P
Cadmium	75 - 125	9.0648		0.7854	J	9.08	91		P
Calc:.um		1909.9500		2009.5510		0.00	0		NR
Chronium	75 - 125	55.9537		21.6144		36.31	95		P
Cobal.t	75 - 125	90.8056		4.6451	J	90.78	95		P
Copper	75 - 125	53.9701		10.7750		45.39	95		P
Iron		8818.7002		8446.2783		0.00	0		NR
Lead		25.2196		21.9594		3.63	90		P
Magnesium		1298.5090		1368.2820		0.00	0		NR
Manganese		545.6621		480.1392		90.78	72		P
Mercury	75 - 125	0.5949		0.0622	J	0.54	99		CV
Nickel	75 - 125	94.1146		7.3681		90.78	96		P
Potassium		670.1297	J	636.7228	J	0.00	0		NR
Selenium	75 - 125	5.9234	J	6.3544	Ū	9.08	65	N	P
Silver	75 - 125	7.0986		1.8155	Ū	9.08	78		P
Sodium		37.1139	J	38.7377	J	0.00	0		NR
Thallium	75 - 125	9.5190		4.5389	σ	9.08	105		P
Vanadium	75 - 125	93.8598		14.5362		90.78	87		P
Zinc	75 - 125	159.1208		75.1818		90.78	92		P

Comme	ents:					
ч	مان	 	 	 	 	

5B-IN

POST-DIGESTION SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

94

P

P

"High								MEIMC	:0A		
Lab Na	ime:	Ceimic	Corporation	on	Contract:	68-W-02-063					
Lab C	ode:	CEIMIC	Cas	e No.: 31852	NRAS No.:		SDG NO.	MEIM	ß9		
		l/water) on Units	<u> </u>	_ 		Level (Low/med):	LOW			
	Anal	yte.	Control Limit %R	Spiked Sample Result (SSR)	Samr Result		Spike Added (SA)	\$p		W	

112.97

53.65

Antimony

Selenium

60.00

35.00

σ

σ

120.0

70.0

Comments:

6-IN

DUPLICATES

EPA SAMPLE NO.

ME1MC0D	

Lab Name: Ceimic Corporation Contract: 68-W-02-063

Lab Code: CEIMIC Case No.: 31852 NRAS No.: SDG MEIMB9

NO.:
SOIL Level (low/med): LOW_

% Solids for Sample: 91.8 % Solids for Duplicate: 93.7

Concentration Units: (ug/L or mg/kg dry weight): MG/KG

Matrix (soil/water):

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	м
Aluminum		6675.3608		5681.8789		16		P
Antimony		10.8932	ט	10.8932	ט			P
Arsenic	2.7233	3.4766		3.2955	-	5		P
Barium	36.3108	92.0676		84.1708		9		P
Beryllium		0.4381	J	0.3976	J	10		P
Cadmium		0.7854	J	0.6988	J	12		P
Calcium	907.7704	2009.5510		1812.4360		10		P
Chromium		21.6144		20.6176		5		P
Cobalt		4.6451	J	4.1312	J	12		P
Copper	4.5389	10.7750	$\overline{\parallel}$	10.2012		5		P
n n		8446.2783		7306.2642		14		P
Lead		21.9594		20.7397		6		Р
Magnesium	907.7704	1368.2820	<u> </u>	1185.1710		14		P
Manganese		480.1392		426.2282		12		P
Mercury		0.0622	J	0.0689	J	10		CV
Nickel		7.3681		6.2847	J	16		P
Potassium		636.7228	J	548.8833	J	15		P
Selenium		6.3544	ט	6.3544	ט	_1		Þ
Silver		1.8155	ם	1.8155	ט			P
Sodium		38.7377	J	40.8696	J	5		P
Thallium	1 1	4.5389	U	4.5389	ט			P
Vanadium	9.0777	14.5362	I	12.5291		15		P
Zinc		75.1818	ii	65.1935	i	14		P

7 - IN LABORATORY CONTROL SAMPLE

ab Name:	Ceimic	Corporation		Contract:	68-W-02-063	
ab Code:	CEIMIC	Case No.:	31852	NRAS No:	SDG NO.:	ME1MB9
olid LCS S	Source:	LCS-S(0996)				
		203 2 (0330)		•		

i	Aq	ueous (ug/L)			Solid	(m	g/kg)		
Analyte	True	Found	%R	True	Found	С	Limi	ts	%R
Aluminum				309.0	296.3		193.1	424.2	96
Antimony				213.0	185.0		129.4	297.2	87
Arsenic				930.0	1007.7		613.6	1247.0	108
Barium			1	5.3	4.6	J	2.5	8.1	87
Beryllium			1	18.8	18.8		15.3	22.2	100
Cadmium				41.6	42.6		32.1	51.1	102
Calcium			_	184000.0	180310.3		42933.0	25376.0	98
Chromium				96.5	99.4		77.8	115.2	103
Cobalt				140.0	147.3		115.4	165.6	105
Copper			<u> </u>	6680.0	7051.5		5727.3	7633.1	106
Iron				21000.0	21667.1		16831.3	25193.0	103
ad			Ī	224.0	220.7		167.6	280.5	99
Magnesium				113000.0	109099.7		97943.0	28886.0	97
Manganese				201.0	216.5		167.9	234.4	108
Mercury				12.3	12.4		7.8	16.9	101
Nickel			<u> </u>	56.8	58.6		43.5	70.1	103
Potassium				102.4	71.5	J	0.0	379.3	70
Selenium				37.0	36.4		17.6	56.4	98
Silver				20.9	21.7		13.2	28.5	104
Sodium				92.8	55.0	J	0.0	277.4	59
Thallium				38.1	33.1		24.6	51.6	87
Vanadium				65.8	71.3		53.0	78.6	108
Zinc				175.0	165.3		127.7	222.1	94

8-IN **ICP-AES and ICP-MS SERIAL DILUTIONS**

EPA SAMPLE NO.

Lab Name: Ceimic Corporation Contract: 68-W-02-063

SDG NO.: ME1MB9 Lab Code: CEIMIC Case No.: 31852 NRAS No.:

Matrix (soil/water): SOIL Level (low/med): LOW

"Hoppy

centration Units	ug/L						
Analyte	Initial Sample Result (I)	С	Serial Dilution Result (S)	С	% Difference	Q	м
Alumir.um	29379.90	1 1	30820.52		5	Ī	P
Antimony	60.00	ש	300.00	ם		1	P
Arsenic	11.28	J	75.00	ס	100	1	P
Barium	284.26		291.45	JJ	3	1	P
Beryllium	2.07	J	2.55	J	23		P
Cadmium	4.63	J	5.35	[J	16		P
Calcium	11736.83		12995.68	J	11	E	P
Chromium	74.26	\Box	74.34		0		P
Cobalt	8.98]]	10.73	J	19		P
Copper	75.29		101.07	ਹ	34	E	P
Iron	20785.55	\prod	21536.13		4	1	P
Lead	351.16		365.49		4		P
Magnesium	4343.57	J	5062.58	J	17	E	P
Manganese	405.01		418.12		3	1	P
Nickel	25.95	J	27.50	J	6		P
Potassium	1409.97	J	2443.17	J	73	1	P
Selenium	35.00	ס	175.00	ט	i i	Î	P
Silver	10.00	ס	50.00	ਹ			P
Sodium	229.40	J	25000.00	ט	100		P
Thallium	25.00	ט	125.00	0			P
Vanadium	45.22	J	46.65	J	3		P
Zinc	277.19	ĪĪ	280.89	J	1	1	P

9-IN METHOD DETECTION LIMITS (ANNUALLY)

La. Wame	Caimic	Corporation	Contract:	68-W-02-063
гимание:	Cermic	Corporation	contract:	00-W-U2-U03

Instrument Type: CV Instrument ID: FIMS CVAA Date: 1/27/2003

Preparation Method: CS1

Concentration Units (ug/L or mg/kg): UG/L

Analyte	Wave-Length /Mass	CRQL	MDL
Mercury	253.70	0.2	0.03

9-IN

METHOD DETECTION LIMITS (ANNUALLY)

I Name:	Ceimic (Corporat	ion		Contract:	68-W-02-0	63		
Lab Code:	CEIMIC	Case	No.: 318	52	NRAS No.:		SDG NO	.: ME1MB9	_
Instrument "	Type:	CV	Instrument	ID:	FIMS CVAA		Date:	1/27/2003	
Preparation	Method:	CS1							
Concentratio	on Units	(ug/L or	mg/kg):	MG/R	<u></u>				

Analyte	Wave-Length /Mass	CRQL	MDL
Mercury	253.70	0.10	0.04

9-IN METHOD DETECTION LIMITS (ANNUALLY)

Manue:	Celuic Colf			- Contract:			······································
Lab Code:	CEIMIC	Case No.:	31852	NRAS No.:	SDG 1	NO.: ME1MB9	
Instrument I	Type: P	Instru	ment ID:	PE Optima ICP	Date:	2/26/2003	
Preparation.	Method:	NP1					

UG/L

Concentration Units (ug/L or mg/kg):

Analyte	Wave-Length /Mass	CRQL	MDL
Aluminum	308.22	200	23.51
Antimony	206.83	60	2.90
Arsenic	188.98	1.5	4.46
Barium	233.53	200	1.04
Beryllium	313.11	5	0.14
Cadmium	226.50	5	0.20
Calcium	315.89	5000	35.71
Chromium	267.72	10	0.66
Cobalt	228.62	50	0.45
Copper	324.75	25	0.67
Iron	273.96	100	9.44
Lead	220.35	10	1.48
Magnesium	279.08	5000	14.72
Manganese	257.61	15	0.68
Nickel	231.60	40	1.05
Potassium	766.49	5000	49.93
Selenium	196.03	35	6.04
Silver	338.29	10	0.66
Sodium	589.59	5000	19.93
Thallium	190.80	25	7.88
Vanadium	290.88	50	1.22
Zinc	206.20	60	1.26

9-IN METHOD DETECTION LIMITS (ANNUALLY)

I Name: Ceimic Corporation Contract: 68-W-02-063

Lab Code: CEIMIC Case No.: 31852 NRAS No.: SDG NO.: ME1MB9

Instrument Type: P Instrument ID: PE Optima ICP Date: 2/26/2003

Preparation Method: HS1

Concentration Units (ug/L or mg/kg): MG/KG

Analyte	Wave-Length /Mass	CRQL	MDL
Aluminum	308.22	40.00	4.67
Antimony	206.83	12.00	0.22
Arsenic	188.98	3.00	0.46
Barium	233.53	40.00	0.51
Beryllium	313.11	1.00	0.04
Cadmium	226.50	1.00	0.03
Calcium	315.89	1000.00	3.00
Chromium	267.72	2.00	0.28
Cobalt	228.62	10.00	0.15
Copper	324.75	5.00	0.29
Iron	273.96	20.00	9.99
Lead	220.35	2.00	0.16
Magnesium	279.08	1000.00	6.43
Manganese	257.61	3.00	0.06
Nickel	231.60	8.00	0.13
Potassium	766.49	1000.00	7.36
Selenium	196.03	7.00	0.67
Silver	338.29	2.00	0.09
Sodium	589.59	1000.00	2.92
Thallium	190.80	5.00	0.28
Vanadium	290.88	10.00	0.19
Zinc	206.20	12.00	1.52

9-IN

UG/L

Concentration Units (ug/L or mg/kg):

METHOD DETECTION LIMITS (ANNUALLY)

I Name:	Ceimic Corp	poration	Contract: 68-W-02-0	63	
Lab Code:	CEIMIC	Case No.: 31852	NRAS No.:	SDG NO.	: ME1MB9
Instrument '	Type: P	Instrument ID:	PE Optima ICP	Date:	2/26/2003
Preparation	Method:	HS1			

Analyte	Wave-Length /Mass	CRQL_	MDL
Aluminum	308.22	200	98.83
Antimony	206.83	60	5.60
Arsenic	188.98	15	6.94
Barium	233.53	200	12.03
Beryllium	313.11	5	0.28
Cadmium	226.50	5	0.31
Calcium	315.89	5000	39.12
Chromium	267.72	10	0.63
Cobalt	228.62	50	1.03
Copper	324.75	25	2.96
Iron	273.96	100	34.29
Lead	220.35	10	3.45
Magnesium	279.08	5000	11.80
Manganese	257.61	15	3.10
Nickel	231.60	40	2.61
Potassium	766.49	5000	114.52
Selenium	196.03	35	6.73
Silver	338.29	10	0.58
Sodium	589.59	5000	117.00
Thallium	190.80	25	7.44
Vanadium	290.88	50	1.94
Zinc	206.20	60	26.68

12-IN

PREPARATION LOG

Lab Name: Ceimic Corporation

Contract: 68-W-02-063

Lab Code: CEIMIC

Case No.: 31852 NRAS No.:

SDG NO.: ME1MB9

Preparation Method:

CS1

EPA Sample No.	Preparation Date	Weight (gram)	Volume (mL)
PBS01	6/20/2003	0.20	100
LCSS01	6/20/2003	0.05	100
ME1MB9	6/20/2003	0.20	100
ME1MC()	6/20/2003	0.20	100
ME1MC0S	6/20/2003	0.20	100
ME1MC()D	6/20/2003	0.20	100

12-IN

PREPARATION LOG

Lab Name: Ceimic Corporation

Contract: 68-W-02-063

Lab Code: CEIMIC Case No.: 31852

NRAS No.:

SDG NO.: ME1MB9

Preparation Method: HS1

EPA Sample No.	Preparation Date	Weight (gram)	Volume (mL)
PBS01	6/22/2003	1.00	200
LCSSOL	6/22/2003	1.00	200
ME1MB9	6/22/2003	1.44	200
ME1MC()	6/22/2003	1.20	200
ME1MC0D	6/22/2003	1.20	200
ME1MC0S	6/22/2003	1.20	200

Comments:

12-IN

PREPARATION LOG

Lab Name: Ceimic Corporation

Contract: 68-W-02-063

Lab Code: CEIMIC

Case No.: 31852

NRAS No.:

SDG NO.: ME1MB9

Preparation Method:

CS1

EPA Sample No.	Preparation Date	Weight (gram)	Volume (mL)
S0	6/20/2003		100
S0.2	6/20/2003		100
S0.5	6/20/2003		100
S1.0	6/20/2003		100
S5.0	6/20/2003		100
S10.0	6/20/2003		100
ICV01	6/20/2003		100
ICB01	6/20/2003		100
CRI01	6/20/2003		100
CCV01	6/20/2003		100
CCB01	6/20/2003		100
CRI02	6/20/2003		100
CCV02	6/20/2003		100
CCB02	6/20/2003		100

Comments:	 				 	
	 			 	 	

12-IN

PREPARATION LOG

Lab Name: Ceimic Corporation

Contract: 68-W-02-063

Lab Code: CEIMIC Case No.: 31852 NRAS No.:

SDG NO.: ME1MB9

Preparation Method: NP1

EPA Sample No.	Preparation Date	Weight (gram)	Volume (mL)
50	7/7/2003		100
S	7/7/2003		100
ICV01	7/7/2003		100
ICB01	7/7/2003		100
CRI01	7/7/2003		100
ICSA01	7/7/2003		100
ICSAB01	7/7/2003		100
CCV01	7/7/2003		100
CCB01	7/7/2003		100
CCV02	7/7/2003		100
CCB02	7/7/2003		100
CRI02	7/7/2003		100
ICSA02	7/7/2003		100
ICSAB02	7/7/2003		100
CCV03	7/7/2003		100
CCB03	7/7/2003		100
CRI03	7/7/2003		100
ICSA03	7/7/2003		100
ICSAB03	7/7/2003		100
CCV04	7/7/2003		100
CCB04	7/7/2003	-	100

Comments:	 	 	 	

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION V

ESD Central Regional Laboratory Data Tracking Form for Contract Samples

Sample Delivery Group: <u>MEIMB9</u>	CERCLIS No: 1NA980904379
Case No: 31852	Site Name/Location: Becks Lake
Contractor of EPA Lab: CEINIC	Data User: 18Em
No. of Samples:D	ate Sampled or Date Received: 7-14-03
Have Chain-of-Custody records been received? Have traffic reports or packing lists been receive If no, are traffic report or packing list numbers w YesNo If no, which traffic report or packing list number	ritten on the Chain-of-Custody Record? s are missing? ————————————————————————————————————
Are basic data forms in? Yes No No of samples claimed:	No. of samples received:
Received by: Eua M. Sixon 8	2 SAT Date: 7-14-03
Received by LSSS: Eun M. D. xon	
Review started:	Reviewer Signature:
	Date review completed: 7-17-63
Copied by: Cun M. DIX on E.	
	on 85AT Date: 7-21-03
DATA USER: Please fill in the blanks below and return this for Sylvia Griffin, Data Mgmt. Coordinator,	
Data received by:	Date:
Data review received by:	Date:
Organic Data Complete Dioxin data Complete	[] Suitable for Intended Purpose [] \(\sin \) if OK [] Suitable for Intended Purpose [] \(\sin \) if OK [] Suitable for Intended Purpose [] \(\sin \) if OK [] Suitable for Intended Purpose [] \(\sin \) if OK
Repetited by Data Migmit, Coordinator for Files. (Date:

DATE:	July 21,	2003			
	Office of P.O. Box 100 N. Se		al/Site		ent ation Section
Attn:	Mark Jawo	rski			
SITE NAME:	Becks Lak	e			
CASE NO	LAB	NO # OF SAM	PLES	SDG	MATRIX
31852	Ceimic	20		ME1MB0	Soil
Upon receipt o and note any m				age for	completeness
Send this form after filling			, Data M	anagemen	t Coordinator
Data Received 1	oy:		Date:		
PROBLEMS:					

I KODLEND.

Third

1 100

Please indicate if data is complete, and note if there are any deliverables missing from the cases noted above.

Received by Data Management Coordinator, CRL for file.

Date:_____

Signature:_____

FROM: U.S. EPA

Region V

Central Regional Laboratory 536 S. Clark, 10th Floor

CHICAGO, IL 60605

Sent By: Eva M. Dixon, Sr. Data Specialist

ESAT

RECEIVED

JUL 2 4 2003

DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF LAND QUALITY

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION V

DATE:	7/17/03
SUBJECT:	Review of Data Received for review on
FROM:	Stephen L. Ostrodka, Chief (SMF-4J) Superfund Field Services Section
TO:	Data User:IDEM
We have rev	iewed the data by CADRE for the following case:
SITE NAME	: Becks Lake (IN)
CASE NUM	BER: 31852 SDG NUMBER: ME1MB0
Number and	Type of Samples: 20 soils
Sample Numl	bers: ME1MB0-8, C2-9, D0-2
Laboratory: _	Ceimic Hrs. for Review:
Following are	e our findings:
	el 2 narrative. It is an assembly of CADRE files provided to ESAT. The data

CC: Cecilia Moore Region 5 TOPO Mail Code: SMF-4J Case: SDG: Page 2 of 5 Site: Laboratory:

Below is a summary of the out-of-control audits and the possible effects on the data for this case:

NUMBER (##) MATRIX samples, numbered ##, were collected on DATE. The lab received the samples on DATE in good condition. All samples were analyzed for metals and cyanide. All samples were analyzed using the CLP SOW ILM05.2 analysis procedures.

Mercury analysis was performed using a Cold Vapor AA Technique. Cyanide analysis was performed using the MIDI Distillation procedure. The remaining inorganic analyses were performed using an Inductively Coupled Plasma-Atomic Emission Spectrometric (ICP-AES) procedure.

Assembled by: Stephen Connet

Date: 7/17/03

Case: SDG: Page 3 of 5

Site: Laboratory:

1. HOLDING TIME:

Qualification: Holding Time Protocol: INORG

DC-10 The following inorganic soil samples were reviewed for holding time violations using criteria

developed for water samples.

MEIMBO, MEIMBI, MEIMB2, MEIMB3, MEIMB4, MEIMB5, MEIMB6, MEIMB7, MEIMB8, MEIMC2, MEIMC3, MEIMC4, MEIMC5, MEIMC6, MEIMC7, MEIMC8, MEIMC9, MEIMD0, ME1MD1, ME1MD2, ME1MD2D, ME1MD2S

2. CALIBRATIONS:

Qualification: Calibrations Protocol: INORG

No defects found.

Qualification: CRDL/CRQL Standard Protocol: INORG

No defects found.

3. BLANKS:

Qualification: Laboratory Blanks Protocol: INORG

No defects found.

4. MATRIX SPIKE/MATRIX SPIKE DUPLICATE AND LAB CONTROL SAMPLE:

Qualification: Matrix Spikes Protocol: INORG

No defects found.

Qualification: Laboratory Control Sample Protocol: INORG

No defects found.

5. LABORATORY AND FIELD DUPLICATE:

Qualification: Duplicates Protocol: INORG

No defects found.

6. ICP ANALYSIS:

Qualification: Serial Dilution Protocol: INORG

DC-4 The following inorganic samples are associated with an ICP serial dilution percent difference which is not in criteria. The serial dilution result is greater than the sample result, indicating a potential negative interference. The data must be qualified using professional judgement. Hits and non-detects are not flagged.

Copper

MEIMB0, MEIMB1, MEIMB2, MEIMB3, MEIMB4, MEIMB5, MEIMB6, MEIMB7, MEIMB8, MEIMC2, MEIMC3, MEIMC4, MEIMC5, MEIMC6, MEIMC7, MEIMC8, MEIMC9, MEIMD0,

> Assembled by: Stephen Connet Date: 7/17/03

Case: SDG: Page 4 of 5

Site: Laboratory:

MEIMDI, MEIMD2

Potassium

MEIMB0, MEIMB1, MEIMB2, MEIMB3, MEIMB4, MEIMB5, MEIMB6, MEIMB7, MEIMB8, MEIMC2, MEIMC3, MEIMC4, MEIMC5, MEIMC6, MEIMC7, MEIMC8, MEIMC9, MEIMD0, MEIMD1, MEIMD2

DC-6 The following inorganic samples are associated with an ICP serial dilution percent difference which is not in criteria. The serial dilution result is a non-detect. Use professional judgement to qualify sample data.

Sodium

ME1MB0, ME1MB1, ME1MB2, ME1MB3, ME1MB4, ME1MB5, ME1MB6, ME1MB7, ME1MB8, ME1MC2, ME1MC3, ME1MC4, ME1MC5, ME1MC6, ME1MC7, ME1MC8, ME1MC9, ME1MD0, ME1MD1, ME1MD2

Qualification: Interference Check Sample Protocol: INORG

DC-10 The following inorganic samples have one or more interferents present at concentrations more than true amounts added in the ICSAB solution. Use Professional judgement to qualify sample data.

MEIMC7

7. GFAA ANALYSIS:

No GFAA analyses were performed for this case.

8. SAMPLE RESULTS:

Qualification: Sample Result Verification Protocol: INORG

No defects found.

Qualification: CADRE Reserved Protocol: INORG

DC-2 Verification of non-detected results and assignment of "U" qualifier when the reported value is less than detection limit.

ME1MB0, ME1MB1, ME1MB2, ME1MB3, ME1MB4, ME1MB5, ME1MB6, ME1MB7, ME1MB8, ME1MC2, ME1MC3, ME1MC4, ME1MC5, ME1MC6, ME1MC7, ME1MC8, ME1MC9, ME1MD0, ME1MD1, ME1MD2, ME1MD2D, ME1MD2S, PBS01

Assembled by: Stephen Connet

Date: 7/17/03

Case: SDG: Page 5 of 5 Site: Laboratory:

CADRE ILM05.2 Data Qualifier Sheet

Qualifiers	Data Qualifier Definitions
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	The result is an estimated quantity, but the result may be biased high.
J-	The result is an estimated quantity, but the result may be biased low.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.
UJ	The analyte was analyzed for, but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

Assembled by: Stephen Connet

Date: 7/17/03

Page ____ of ___

104

Case #: 31852 Site : SDG: ME1MB0 BECKS LAKE CEIMIC

Lab.:

Number of Soil Samples: 20 Number of Water Samples: 0

Reviewer: Date:

Sample Number :	ME1MB0		ME1MB1		ME1MB2		ME1MB3		ME1MB4	
Sampling Location :	S1		S2		S3		S4		S5	
Matrix :	Soil		Soil		Soil		Soil		Soil	
Units:	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Date Sampled :	06/16/2003		06/16/2003		06/16/2003		06/16/2003		06/16/2003	
Time Sampled :	10:55		11:30		11:45		12:15		12:30	
%Solids :	90.9		84.5		88.3		90.3		73.3	
Dilution Factor :	1.0		1.0		1.0		1.0		1.0	
ANALYTE	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	4690		4920		4300		5010		4550	
ANTIMONY	25.5		£ .,,1_12.9	U	12.7	U 😯	13.3	Ü	14.1	U.
ARSENIC	4.2		2.1		3.8		4.4		2.6	
BARIUM	} 122	and the second	81.7		7 77 78.8		76.3	- 4		
BERYLLIUM	0.60		0.75		0.55		0.53		0.39	
CADMILM 35-12-1	1.1		2.0		7 1.2		0.89	200	0.67	
CALCIUM	5220		39600		4230		4740		2960	
CHROMIUM	16.3	4	74.6	7.7	9.7		10.2		7.9	
COBALT	3.2		2.8		2.6		2.7		1.7	
COPPER	25.0		/137		23.0		22.9	***	¥ 19.7	
IRON	7500		11100		6370		7360		4030	
LEAD	167	100	70.0	76.70.00	166		248		179	
MAGNESIUM	1760		10300		1010		1510		942	
MANGANESE	4 241		345	1.6	164		212		87.9	
MERCURY	0.14		0.13	ŀ	0.16		0.11		0.090	
NICKEL	6.5	1	6.4		8.6		5.4		43	
POTASSIUM	283		469		610		507		315	
SELENIUM LE LE TOTAL LE	6.9	Ű.	7.5	U F	7.4	ט ש	7.8	U	8.2	U
SILVER	2.0	U	2.2	υ	2.1	U	2.2	U	2.4	U
SODIUM	134		198		78.6		125		90.6	
THALLIUM	4.9	υ	5.4	U	5.3	υ	5.5	υ	5.9	υ
VANADIUM	13.1	1.00	12.6		911.3		15.6		10.0	
7INC	165		90.5		440	· · · · · · · · · · · · · · · · · · ·	440	[404	I

DISCLAIMER: This package has been electronically assessed as an added service to our customer. It has not been either validated or approved by Region 5 and any subsequent use by the data user is strictly at the risk of the data user. Region 5 assumes no responsibility for use of unvalidated data.

89.5

148

165

ZINC

SDG : ME1MB0 BECKS LAKE CEIMIC

Site :

Reviewer:
Date:

Sample Number :	ME1MB5		ME1MB6		ME1MB7		ME1MB8		ME1MC2	
Sampling Location :	S6		S7		S8		S9		S12	Ī
Matrix:	Soil		Soil		Soil		Soil		Soil	- 1
Units:	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Date Sampled :	06/16/2003		06/16/2003		06/16/2003		06/16/2003		06/16/2003	- 1
Time Sampled :	12:55		14:30		14:30		13:05		11:30	
%Solids :	84.7		95.8		95.7		86.9		78.1	1
Dilution Factor :	1.0		1.0		1.0		1.0		1.0	
ANALYTE	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	4820		5570		4970		4920		4950	
ANTIMONY	13.1	· U	11.9	U	.e.i i. """	U.	7,7 / 13.4	ប្់ុះ	14.8	U 🔭
ARSENIC	3.5		2.8		2.2		10.7		7.3	
BARIUM	73.7	estines.	54.5	Ţ.	54.5	***	120		94,5	
BERYLLIUM	0.57	·····	0.45		0.45		0.79		0.58	
CADMILM		200000	0.56		0.62		2.1		14	
CALCIUM	4840	A CONTRACTOR	3380	10 OF W B0-2012000	3190	A Selbendress	3620	S S A A A REMONSTRA	15000	2000479400014
CHROMIUM	14,3		9.5	4	8.8		29.0		12.1	
COBALT	2.3	SOUTH STREET	1.7	V. CATONIAN V	1.7	a. Assessment control or	5.4	~ Andrew in termination	3.0	T 4 SHARRON NIES
COPPER	22.0		17,8	****	19.6		33.3		34.5	E
IRON	5920	2 NO. 2 SWITHSLAW	4420	. m : screen (Constitute)	4590	TY SEED WALTER	20200	sindher mean acc.	13800	2.61.0 000as 8
LEAD	306		81.5		90.8		238	37	124	
MAGNESIUM	1570	S. P. C. Contraction	1040	· rampestation	985		1300	or telegranasia	2480	r zowaninesz
	146		78.6		2.2 €83.7		234		234	
MERCURY	0.13	200 67 367 04006.	0.060	Name of Confession and Confession an	0.070		0.23	STOP TELESCOPHIST	1.0	J. ST. THOMAS CA.
NICKEL	4 70 6.1		4.4		4.9		26.2	374	7.3	
POTASSIUM	279		373	ellera i sissanten.	375	Frankling Control	405	ACTO OF REPORTS	673	Frijis gen kalese
SELENIUM	7.7	Ŭ.[]	7.0	ŭ 🍱	7.0	Ü	7.8	u	8.6	U.
SILVER	2.2	U 	2.0	U	2.0	U	2.2	U	2.5	U
SODIUM	92.7		148		174		127		69.9	
THALLIUM	5.5	U	0.57	n nen jang angsa na	5.0	U	5.6	U	6.2	U
VANADIUM	13.3		10.5		14.79.9		18.2		18.1	67
ZINC	152		62.2		71.6		222		126	<u> </u>

DISCLAIMER: This package has been electronically assessed as an added service to our customer. It has not been either validated or approved by Region 5 and any subsequent use by the data user is strictly at the risk of the data user. Region 5 assumes no responsibility for use of unvalidated data.

Site:

SDG: ME1MB0 BECKS LAKE CEIMIC

Reviewer : Date :

Sample Number :	ME1MC3		ME1MC4		ME1MC5		ME1MC6		ME1MC7	
Sampling Location :	S13		S14		S15		S16		S17	
Matrix:	Soil		Soil	İ	Soil		Soil		Soil	
Units:	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Date Sampled :	06/16/2003		06/16/2003		06/16/2003		06/16/2003		06/16/2003	
Time Sampled :	11:40		12:00		12:20		12:55		13:00	
%Solids :	89.6		92.8		69.4		70.1		76.1	•
Dilution Factor:	1.0		1.0		1.0		1.0		1.0	
ANALYTE	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	1950		4630		4800		5680		4240	
ANTIMONY	12.8	Ü 📆	11.8	บ	17.1	U	16,9	Ú.	15.6	ប្្រឹ
ARSENIC	5.4		7.2		26.2		13.0	,	24.7	
BARIUN	28.4		84.7		133 Tel 103		92.4	N T	110	
BERYLLIUM	0.34		0.40		1.0		0.52		0.44	
CADMIUM	1.4		3.3	reading week year.	1.6		1.5	and the stand	3.3	inger i danger Kalamanan meran
CALCIUM	13000		21600	} i	11500		13000		11800	
CHROMIUM	5.3		10.4		9.9		12.3		15.8	
COBALT	2.0		3.0		4.3		3.8		6.8	i !
COPPER	14.7	7.0	15.3		\$35.9		24,0		76.5	
IRON	6830		10500		16900		15000		44200	
LEAD	28.7	***************************************	82.8		95,8		4 67.9		143	
MAGNESIUM	3020		2680		1970		2390		2920	
MANGANESE	JH42 145	1.00	2:213		288		120		238	
MERCURY	0.080		0.10		0.16		0.15		0,18	
NICKEL	41		6.0		10.6		8.9		182	
POTASSIUM	180		577		677		399		357	
SELENIUM	7.4	U.S.	6.9	U	10.0	Ú.	9.9	Ū 🕸	91	U
SILVER	2.1	U	2.0	U	2.9	U	2.8	U	2.6	U
SODIUM	47.9		58.6	-1	82.8		104		152	
THALLIUM	5.3	U	4.9	υ	7.1	U	7.1	U	6.5	U
VANADIUM	14.1		44 V 13.5		15.8		. 18.8		18.3	
ZINC	58.7		100		137	L	81.0		268	

DISCLAIMER: This package has been electronically assessed as an added service to our customer. It has not been either validated or approved by Region 5 and any subsequent use by the data user is strictly at the risk of the data user. Region 5 assumes no responsibility for use of unvalidated data.

SDG: ME1MB0 BECKS LAKE CEIMIC

Site : Lab. : Reviewer :

440

Reviewer : Date :

Sample Number :	ME1MC8		ME1MC9		ME1MD0		ME1MD1		ME1MD2	
Sampling Location :	S18		S19		S20		S21		S22	Į
Matrix:	Soil		Soil		Soil		Soil		Soil	1
Units:	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Date Sampled :	06/16/2003		06/16/2003		06/16/2003		06/16/2003	ļ	06/16/2003	1
Time Sampled :	14:40		14:55		15:15		15:35		15:40	Į.
%Solids :	90.1		89.1		80.9		79.6		78.6	1
Dilution Factor:	1.0		1.0		1.0		1.0		1.0	
ANALYTE	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	2450		6140	a contrata	4180	3 3/20 14 977	3390		3200	**
ANTIMONY	12.9	U.	13.0	U	14.5	U	41 15.1	υ×	#215:1	U
ARSENIC	8.0	A COMPANY PORTY	32.9	. Vis. & Vision below.	10.1	or realisation between	11.7	C 475.5 (EM 40794)	12.0	er no - Designmen sociales. J
BARIUM	37.3	A CONTRACTOR	147		ેનું 65.2		67.8		87.3	
BERYLLIUM	0.23	1347^9#W0439440V	0.46	y aggraphed agran	0.50	(Characteristics)	0.32). descriptions of	0.28	
CADMIUM	2.0.97		7.3		1.2	100	0.70	# tar	0.98	
CALCIUM	11000	a imangangan a	13900	Silver a strategy of the pro-	19400	remove Collegens	16600	· rest Phonores	37700	TENGENSEL.
CHROMIUM	29.6		152		11.3		7.6		8.7	700
COBALT	1.7	757 # 366 -#29	5.1	Outrespectation in the design of	4.2	o varance	2.5	THE OF THE PROPERTY OF THE	2.7	ii muu Xadadaadan 1907
COPPER	7, 17.3		70.5		21.7		10.4	SIZ	143	
IRON	7420	~~	15700	to see a lifetiment to	13100	port of the same	9950	COLUMN DESCRIPTION OF	12800	ch annual hardens that
LEAD	30.8		137		247,7		39.9		47.4	
MAGNESIUM	1730	odougr tim a isok	3930	School of the Paragraphs at	3580	THE STREET	2340	n nedataken	3360	Constitute in
MANGANESE	77.5	479	438		249		198		307	
MERCURY	0.070	::/saabetteren	0.92	1.00 240002 00	0.080	72 (1888) P.S. C.	0.090	n was seemed to	0.080	3-8-8 -88-8 -8-9
NICKEL	4.2	A CONTRACTOR	17:3		·		4.8		5,1	1.00
POTASSIUM	487	95.5 (1865) \$48.8 5.6	779	* : * @25 229 H	439	. Tremmass	430	00 TOKE MET SAME O	321	.a. > > o#05257
SELENIUM 3	7.5	U ***	7.6	Ú	8.5	U	8.8	U	8.8	֓ ֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֞֞֞֞֞֞
SILVER	2.2	U	2.0	or temperature.	0.17	2000 100000	2.5	U	2.5	U ************
SODIUM	50.7		97.7		211		61.8		81.0	
THALLIUM	5.4	U	5.4	U	6.1	U	6.3	U	6.3	U
VANADIUM	10.7		17.3	100 mg	14.3		10.8		10.3	
ZINC	52.9		829	L	85.9	L	48.0	L	62.3	لـــــا

DISCLAIMER: This package has been electronically assessed as an added service to our customer. It has not been either validated or approved by Region 5 and any subsequent use by the data user is strictly at the risk of the data user. Region 5 assumes no responsibility for use of unvalidated data.

Site: Lab.: SDG: ME1MB0 BECKS LAKE CEIMIC

Reviewer: Date:

"William"

Sample Number :	ME1MD2D		ME1MD2S							
Sampling Location :	S22		S22							
Matrix :	Soil		Soil							
Units:	mg/Kg		mg/Kg					ł		
Date Sampled :	06/16/2003		06/16/2003							
Time Sampled :	15:40		15:40							
%Solids :	78.3	i	78.6							
Dilution Factor :	1.0		1.0							
ANALYTE	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	3320		4140							
ANTIMONY	15.1	U -	5.9		255		201			
ARSENIC	13.0		22.4							
BARIUM	104		601					*		
BERYLLIUM	0.31	e en consissant	12.8							
CADMILIM	1.0	A STATE OF THE STA	14.0							
CALCIUM	40300		41400	1. 30°0'000 a sua						2.60
CHROMIUM	6.7		57.4	No.			2.00 Asia		A STAN	
COBALT	3.0	-	131						-	
COPPER	14.8	· una	78.1	1475,488	A CONTRACTOR					and Vincent
IRON	14800		13800							
LEAD	55.0		54.3							· · · · · · · · · · · · · · · · · · ·
MAGNESIUM	4180		3320							
MANGANESE	313	E.	448	Land	44.5		Se Carlo			
MERCURY	0.090	**************************************	0.72							
NICKEL	275, 8.1		2 133		1 2 200		78.3	7.00	3366	
POTASSIUM	363		389							
SELENIUM		U-L	8.8	U.					100000	
SILVER	0.17	X 7 MARKA 85 ***	11.5			No. 10 Processor				10-100000
SODIUM	78.0		81.8					亚兹		
THALLIL M	6.3	U	9.7	5.200.000000000000000000000000000000000		COMPRESENTATION CO.		3312234ppp(capture)	No. James Manager	. V 19074-APRIMITED
VANADIUM	10.9		. 4134		***			377	14 E E	
ZINC	62.0		182							<u> </u>

DISCLAIMER: This package has been electronically assessed as an added service to our customer. It has not been either validated or approved by Region 5 and any subsequent use by the data user is strictly at the risk of the data user. Region 5 assumes no responsibility for use of unvalidated data.

USEPA Contract Laboratory Program Inorganic Traffic Report & Chain of Custody Record

ļ	Case No:	31852	_
	DAS No:	BA	
	SDG No: ME 1	MEZ EA 6/18/03	

						SDG No:MEIN	1 C2 EA 6/18/03
Date Shipped:	6/17/03	Chain of Custody Re	ecord	Sampler Signature:		For Lab Use On	
Carrier Name:	FedEx	Relinquished By	(Date / Time)	Received By	(Date / Time)	Lab Contract No:	<u>68W02063</u>
Airbill: Shipped to:	834176501935 Ceimic Corporation	1 Danil P. Clier	Chillians	Elizaleth	1 stuja 6/18/03	Unit Price:	M3
.,	10 Dean Knauss Drive Narragansett RI 02882	2	_8_	0		Transfer To:	SA SA
	(401) 782-8900	3		6/18/03		Lab Contract No:	6/18/
		4				Unit Price:	163

INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND	TAG No./ PRESERVATIVE/ Bottles	STATION LOCATION	SAMPLE COLL DATE/TIME		ORGANIC SAMPLE No.	FOR LAB USE ONLY Sample Condition On Receipt
ME1MC2	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021520 (Ice Only) (1)	S12	S: 6/16/03	11:30		
ME1MC3	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021521 (Ice Only) (1)	S13	S: 6/16/03	11:40		
ME1MC4	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021522 (Ice Only) (1)	S1 4	S: 6/16/03	12:00		
ME1MC5	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021523 (Ice Only) (1)	S15	S: 6/16/03	12:20		
ME1MC6	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021524 (Ice Only) (1)	S16	S: 6/16/03	12:55		
ME1MC7	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021648 (Ice Only) (1)	S17	S: 6/16/03	13:00		
ME1MC8	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021649 (Ice Only) (1)	S18	S: 6/16/03	14:40		
ME1MC9	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021650 (Ice Only) (1)	S19	S: 6/16/03	14:55		
ME1MD0	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021652 (Ice Only) (1)	S20	S: 6/16/03	15:15		
ME1MD1	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021653 (Ice Only) (1)	\$21	S: 6/16/03	15:35		

Shipment for Case	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s): 7	Coder Temperature	Chain of Custody Seal Number:
Complete?Y	ME1MD2	hedden Child	Upon Receipt CA	620411 20112
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G		Custody Seal Intact? V Shipment iced?

TR Number:

USEPA Contract Laboratory Program Inorganic Traffic Report & Chain of Custody Record

Case No:	31852	
DAS No:	# ~	ł
SDG No: ME	MEZ 6/18/03	L_

							and No:	1EIME	26/18/03
Date Shipped: Carrier Name:	6/17/03		Chain of Custo	dy Record	Sampler Signature:		For Lab	Use Only	
Airbill:	FedEx		Relinquished By	(Date / Time)	Received By	(Date / Time)	Lab Contra	ict No:	68W02063
Shipped to:	834176501935 Ceímic Corporatio	n .	1 Davil F. Cli	int (1, 7/02 , 20 cm	Elizalett	Isting 6/18/03	Unit Price:		M3
ļ	10 Dean Knauss I Narragansett RI 0		2	~ En	U	<u> </u>	Transfer To	o:	E
	(401) 782-8900		3	6	118/03		Lab Contra	ict No:	6/181
			4				Unit Price:		103
INORGANIC SAMPLE No.		CONC/ TYPE	ANALYSIS/ TURNAROUND	TAG No./ PRESERVATIVE/ Bottles	STATION S LOCATION	SAMPLE COL DATE/TIN		ORGANIC SAMPLE No.	FOR LAB USE ONLY Sample Condition On Receipt
ME1MD2	Soil (0"-12")/	M/G	ICP/MS (21)	5021654 (Ice Only) (1)	S22	S: 6/16/03	15:40		

	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):		Chain of Custody Seal Number:		
Complete?Y	ME1MD2	made the Cuth	Upon Receipt: SA	204(1	10/12	
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G		Custody Seal Intact?	Shipment Iced?	
ICP/MS = CLP TAL Tota	Metals ICP/MS					

TR Number:

Dan Chesterson

USEPA Contract Laboratory Program Inorganic Traffic Report & Chain of Custody Record

Case No:	31852	
DAS No:	<u>.</u>	
SDG No: MEI	MBO/MEIMB9	-

Date Shipped: 6/17/03 Carrier Name: FedEx

834176501924 Airbill:

Shipped to: Ceimic Corporation 10 Dean Knauss Drive

Narragansett RI 02882 (401) 782-8900

Chain of Custody	Record	Sampler Signature:		Ţ
Relinquished By	(Date / Time)	Received By	(Date / Time)	٦,
Daniel Chi	il 6/11/03 1:30	1. Elizalett	Astria 6/18/03	١
2	ع	A O		٦,
3		0118/03	3	\prod_{i}
4				7

For Lab Use Only

Lab Contract No:

68W02063

P13

Unit Price:

Transfer To:

Lab Contract No:

Unit Price:

		1		<u>l</u>			Unit Pric	:e;	
INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND	TAG No./ PRESERVATIVE/ Bottles	STATION LOCATION	SAMPLE CO DATE/TIM		ORGANIC SAMPLE No.	FOR LAB USE ONLY Sample Condition On Receipt
ME1MB0	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021509 (Ice Only) (1)	S1	S: 6/16/03	10:55		
ME1MB1	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021510 (Ice Only) (1)	S2	S: 6/16/03	11:30		
ME1MB2	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021511 (Ice Only) (1)	\$3	S: 6/16/03	11:45		
ME1MB3	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021512 (Ice Only) (1)	S4	S: 6/16/03	12:15		
ME1MB4	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021513 (Ice Only) (1)	S5	S: 6/16/03	12:30		
ME1MB5	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021514 (Ice Only) (1)	S6	S: 6/16/03	12:55		
ME1MB6	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021515 (Ice Only) (1)	\$7	S: 6/16/03	14:30		
ME1MB7	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021516 (Ice Only) (1)	\$8	S: 6/16/03	14:30		
ME1MB8-≱	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021517 (Ice Only) (1)	S9	S: 6/16/03	13:05		
ME1MB9	Soil (0"-12")/ Dan Chesterson	M/G	ICP/MS (21)	5021518 (Ice Only) (1)	S10	S: 6/16/03	13:25		

= last sample in SDG MEIMBO

Shipment for Case Complete?N	Sample(s) to be used for laboratory QC:		Cooler Temperature Upon Receipt: EA	Chain of Custody Seal Number: 20409 20410
Analysis Key:	Concentration. L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G		Custody Seal Intact? <u>V</u> Shipment Iced? <u>V</u>
ICP/MS = CLP TAL Tota	i Metals iCP/MS			

TR Number: 5-292371269-053103-0001

SDG Narrative

Laboratory Name: Ceimic Corporation

Case No.: 31852 SDG No.: ME1MB0 Contract: 68W02063

Ceimic Project No.: 030764

The following ILM05.2 (ICP-AES) twenty soil samples were received at Ceimic Corporation on June 18, 2003:

EPA ID	Ceimic ID
ME1MB0	030764-12
ME1MB1	030764-13
ME1MB2	030764-14
ME1MB3	030764-15
ME1MB4	030764-16
ME1MB5	030764-17
ME1MB6	030764-18
ME1MB7	030764-19
ME1MB8	030764-20
ME1MC2	030764-01
ME1MC3	030764-02
ME1MC4	030764-03
ME1MC5	030764-04
ME1MC6	030764-05
ME1MC7	030764-06
ME1MC8	030764-07
ME1MC9	030764-08
ME1MD0	030764-09
ME1MD1	030764-10
ME1MD2	030764-11
ME1MD2D	030764-11D
ME1MD2S	030764-11S

Comments on Data Package

The samples for case 31852 were received for ICP-AES and mercury analysis. This is despite the fact that the Traffic Reports / Chains of Custody indicate the need for ICP-MS analysis. Additionally, the sample tags indicate that mercury analysis was not to be performed; but Ceimic was asked to ignore the indication on the tags after consulting with Jessica Brown of the Sample Management Office.

The above samples were digested and analyzed in accordance with the Inorganic Statement of Work (SOW) ILM05.2.

QA/QC Samples:

Matrix spike and duplicate analysis were performed on sample ME1MD2. Serial dilution was performed on sample ME1MC5. A post-digestion spike of sample ME1MD2 was required for antimony and selenium.

Observations:

A "U" flag in the C column on the sample result forms (Form I-IN) indicates that the concentration of that analyte in the sample is undetected at the method detection limit (MDL). If analytes are detected between the Contract Required Detection Limits (CRDL) and the MDL, a "J" flag is shown in the C column on the Form I-IN.

The "N" qualifier applied to Sb and Se. The "E" qualifier applies to Cu and K.

Deviations from Contract:

None.

End of Case Narrative.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Ryan C. Montalbano

Supervisor, Inorganic Laboratories

07/09/03

Date

COVER PAGE

lame:	Ceimic Corporation	Contract: 68-W-02-063	
ab Code:	CEIMIC Case No: 31852	NRAS No.:	SDG No: ME1MB0
No.:	ILM05.2		
	EPA Sample No.	Lab Sample ID	
	ME1MB0	030764-12	
	ME1MB1	030764-13	
	ME1MB2	030764-14	
	ME1MB3	030764-15	
	ME1MB4	030764-16	
	ME1MB5	030764-17	
	ME1MB6	030764-18	
	ME1MB7	030764-19	
	ME1MB8	030764-20	
	ME1MC2	030764-01	
	ME1MC3	030764-02	
	ME1MC4	030764-03	
	ME1MC5	030764-04	
	ME1MC6	030764-05	
	ME1MC7	030764-06	
	ME1MC8	030764-07	
	ME1MC9	030764-08	
	ME1MD0	030764-09	
	ME1MD1	030764-10	
	ME1MD2	030764-11	
4 #	5 dead dis		
ere ICP- <i>P</i> pplied?	AES and ICP-MS interelement corrections	(Yes/No)	YES NO
	NES and ICP-MS background corrections	(Yes/No)	YES NO
_	s, were raw data generated before cation of background corrections?	(Yes/No)	ио ио
omments:			

ontract, oove. Re ibmitted cansmissi	that this data package is in compliance both technically and for completeness, elease of the data contained in this has on diskette (or via an alternate means ion, if approved in advance by USEPA) has the Manager's designee, as verified by	for other than the condit. rdcopy data package and in of electronic as been authorized by the	ions detailed the computer-readable dat
	<i>.</i>		
Ly _{dmo} cure:	ton Contill	Name: Ryan Montalba	ıno
		Title: Inorganic Lab	oratom, Supervisor

COVER PAGE

NRAS No.:

Contract: 68-W-02-063

SDG No: ME1MB0

L ame:

Lab Code:

Ceimic Corporation

CEIMIC Case No: 31852

SOW No.:	ILM05.2				
	EPA Sample No.	Lab	Sample ID		
	ME1MD2D	030	764-11D		
	ME1MD2S	030	0764-11S		
·					
				ICP-AES	ICP-MS
Were TCD_A	USS and ICP-MS interelement corrections		(Yes/No)	YES	NO
applied?	iss and icr-ms interestement corrections		(165/10)		
TOD 1	The state of the s		/an /an)	V=a	***
were ICP-A applied?	MES and ICP-MS background corrections		(Yes/No)	YES	NO
_	s, were raw data generated before				
applio	cation of background corrections?		(Yes/No)	NO	NO
Comments:					
					
_	that this data package is in compliance				
	both technically and for completeness, clease of the data contained in this har				adable data
submitted	on diskette (or via an alternate means	of electro	onic		adabic data
	on, if approved in advance by USEPA) ha the Manager's designee, as verified by		_	oratory	
	, 				
Signature:	ten C. mitales	Name:	Ryan Montalbano		
	for constitue				
Date:	09/39/2003	Title:	Inorganic Labora	tory Superv	isor

1A-IN

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

Case No	2			i i		
Case No		Contract: 6	8-W-0	2-063		
	.: 31852	NRAS No.:		s	DG NO.:	ME1MB0
Matrix (soil/water): SOIL			0307	64-12		
Level (low/med): LOW			6/18	/2003		
90.9	·					
ug/L or mg	/kg drv weight):	MG/KG				
						ו
				<u> </u>		
		<u> </u>		N		1
10-38-2	Arsenic		ļ			1
10-39-3	Barium	122			P	
10-41-7	Beryllium	0.60	J		P]
10-43-9	Cadmium	1.1			P	
10-70-2	Calcium	5220			P	1
10-47-3	Chromium	16.3			P	
10-48-4	Cobalt	3.2	J		P	
10-50-8	Copper	25.0		E	P	
39-89-6	Iron	7500			P	1
39-92-1	Lead	167			P	1
39-95-4	Magnesium	1760		- 1	P	1
39-96-5	Manganese	241			P	1
39-97-6	Mercury	0.14			CV	1
10-02-0	Nickel	6.5	J		P	1
10-09-7	Potassium	283	J	E	P	1
32-49-2	Selenium	6.9	Ū	И	P	1
			Ū		P	1
	Sodium	!	J		P	1
		<u> </u>	U		P	İ
		}	+		P	1
10-66-6	Zinc	165			P	1
	90.9 s (ug/L or mg. 3 No. 29-90-5 10-36-0 10-38-2 10-39-3 10-41-7 10-43-9 10-47-3 10-47-3 10-48-4 10-50-8 39-89-6 39-92-1 39-95-4 39-95-4 39-95-4 39-97-6 10-02-0 10-09-7 32-49-2 10-23-5 10-28-0 10-62-2	90.9 s (ug/L or mg/kg dry weight): s No. Analyte 29-90-5 Aluminum 10-36-0 Antimony 10-38-2 Arsenic 10-39-3 Barium 10-41-7 Beryllium 10-43-9 Cadmium 10-70-2 Calcium 10-47-3 Chromium 10-48-4 Cobalt 10-50-8 Copper 139-89-6 Iron 139-92-1 Lead 139-95-4 Magnesium 139-96-5 Manganese 139-97-6 Mercury 10-02-0 Nickel 10-09-7 Potassium 10-22-4 Silver 10-23-5 Sodium 10-28-0 Thallium	MG/KG MG/K	90.9 s (ug/L or mg/kg dry weight): MG/KG S No. Analyte Concentration C 29-90-5 Aluminum 4690 40-36-0 Antimony 25.5 40-38-2 Arsenic 4.2 40-39-3 Barium 122 40-41-7 Beryllium 0.60 J 40-43-9 Cadmium 1.1 40-70-2 Calcium 5220 40-47-3 Chromium 16.3 40-48-4 Cobalt 3.2 J 40-48-4 Cobalt 3.2 J 40-50-8 Copper 25.0 39-89-6 Iron 7500 39-92-1 Lead 167 39-95-4 Magnesium 1760 39-95-4 Magnesium 1760 39-96-5 Manganese 241 40-02-0 Nickel 6.5 J 40-02-0 Nickel 6.5 J 40-22-4 Silver 2.0 U 40-23-5 Sodium 134 J 40-28-0 Thallium 4.9 U 40-62-2 Vanadium 13.1	90.9 3 (ug/L or mg/kg dry weight): MG/KG 3 No. Analyte Concentration C Q 29-90-5 Aluminum 4690 40-36-0 Antimony 25.5 N 40-38-2 Arsenic 4.2 40-39-3 Barium 122 40-41-7 Beryllium 0.60 J 40-43-9 Cadmium 1.1 40-70-2 Calcium 5220 40-47-3 Chromium 16.3 40-48-4 Cobalt 3.2 J 40-50-8 Copper 25.0 E 39-89-6 Iron 7500 39-92-1 Lead 167 39-95-4 Magnesium 1760 39-96-5 Manganese 241 40-02-0 Nickel 6.5 J 40-02-0 Valentum 6.9 U N 40-23-5 Sodium 134 J 40-22-4 Silver 2.0 U 40-62-2 Vanadium 13.1	90.9 3 (ug/L or mg/kg dry weight): MG/KG 3 No. Analyte Concentration C Q M 29-90-5 Aluminum 4690 P 40-36-0 Antimony 25.5 N P 40-38-2 Arsenic 4.2 P 40-39-3 Barium 122 P 40-41-7 Beryllium 0.60 J P 40-43-9 Cadmium 1.1 P 40-70-2 Calcium 5220 P 40-47-3 Chromium 16.3 P 40-48-4 Cobalt 3.2 J P 40-50-8 Copper 25.0 B P 40-50-8 Copper 25.0 B P 40-90-1 Lead 167 P 40-90-1 Lead 167 P 40-90-6 Manganese 241 P 40-02-0 Nickel 6.5 J P 40-02-0 Nickel 6.5 J P 40-02-4 Silver 2.0 U P 40-23-5 Sodium 134 J P 40-28-0 Thallium 4.9 U P 40-28-0 Thallium 4.9 U P 40-62-2 Vanadium 13.1 P

1A-IN

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

ME1MB1

								1
Lab Name:	Ceimic Co	rporati	Lon	Contract: 6	8-W-C	2-063		
Lab Code:	CEIMIC Case No.: 31852		NRAS No.:	SDG		DG NO.:	ME1MB0	
Matrix (soil/water): SOIL			Lab Sample ID:	0307	64-13			
Level (low/med): LOW			Date Received:	6/18	/2003			
% Solids:	84.5							
Concentrati	on Units (u	g/L or :	mg/kg dry weight)	: MG/KG	_			
	CAS No	•	Analyte	Concentration	С	Q	м]
	7429-9	0-5	Aluminum	4920			P	
	7440-3	6 - 0	Antimony	12.9	U	N	P	1
	7440-3	8-2	Arsenic	2.1	J		P	
	7440-3	9-3	Barium	61.7			P	1
	7440-4	1-7	Beryllium	0.75	J		P]
	7440-4	3-9	Cadmium	2.0			P]
	7440-7	0-2	Calcium	39600			P]
	7440-4	7-3	Chromium	74.6			P]
	7440-4	8-4	Cobalt	2.8	J		P	
WOIN	7440-5	0-8	Copper	13.7		E	P	
	7439-8	9-6	Iron	11100			P	
	7439-9	2-1	Lead	70.0			P]
	7439-9	5-4	Magnesium	10300			P]
	7439-9	6-5	Manganese	345			P]
	7439-9	7-6	Mercury	0.13			CV]
	7440-0	2-0	Nickel	6.4	J		P]
	7440-0	9-7	Potassium	469	J	E	P]
	7782-4	9-2	Selenium	7.5	U	N	P	1

Color Before:	brown	Clarity Before:	n/a	Texture:	medium
Color After:	yellow	Clarity After:	n/a	Artifacts:	
nents:					

2.2

198

5.4

12.6

89.5

υ

J

U

7440-22-4

7440-23-5

7440-28-0

7440-62-2

7440-66-6

Silver

Sodium

Zinc

Thallium

Vanadium

P

P

P

P

₽

1A-IN

INORGANIC ANALYSIS DATA SHEET

						EPA SA	MPLE NO.
4 Billions &						ME:	LMB2
Lab Name: Ce:	imic Corporatio	on	Contract: 6	8-W-0	2-063		
Lab Code: CEI	MIC Case N	o.: <u>31852</u>	NRAS No.:		sd	G NO.:	ME1MB0
Matrix (soil/wa	ater): SOIL		Lab Sample ID:	0307	64-14		
Level (low/med)	: LOW		Date Received:	6/18	/2003		
% Solids:	88.3						
Concentration U	Jnits (ug/L or mo	g/kg dry weight):	MG/KG				
	CAS No.	Analyte	Concentration	C	Q	м	1
	7429-90-5	Aluminum	4300			l P	1
	7440-36-0	Antimony	12.7	U	N	P	1
	7440-38-2	Arsenic	3.8	+		P	1
	7440-39-3	Barium	78.8			P	1
	7440-41-7	Beryllium	0.55	J		P	
	7440-43-9	Cadmium	1.2		<u></u>	P	
	7440-70-2	Calcium	4230	1		P	1
	7440-47-3	Chromium	9.7			P	
	7440-48-4	Cobalt	2.6	J		P	
♦B (a)P'	7440-50-8	Copper	23.0		E	P	1
∠ #1(@)>	7439-89-6	Iron	6370	1		P	1
	7439-92-1	Lead	166			P	1
	7439-95-4	Magnesium	1010	J		P	
	7439-96-5	Manganese	164			P	1
	7439-97-6	Mercury	0.16			CV	
	7440-02-0	Nickel	8.6			P	
	7440-09-7	Potassium	610	J	E	P	
	7782-49-2	Selenium	7.4	Ū	N	P	
	7440-22-4	Silver	2.1	Ū		P	!
	7440-23-5	Sodium	78.6	J		P	
	7440-28-0	Thallium	5.3	σ		P	
	7440-62-2	Vanadium	11.3			P	
	7440-66-6	Zinc	148			P	
	_						
Color Before	: brown	Clarity Befor	re: n/a		Texture:	medium	n
Color After:	yellow	Clarity Afte	r: n/a	· ·	Artifacts:		
nents:							

1A-IN

INORGANIC ANALYSIS DATA SHEET

				-	EPA SA	AMPLE NO.	
						ME:	LMB3
Lab Name: Ce	imic Corporati	on	Contract: 6	68-W-C	02-063		
Lab Code: CE	IMIC Case 1	No.: 31852	NRAS No.:	<u> </u>	sı	OG NO.:	ME1MB0
Matrix (soil/w	ater): SOIL		Lab Sample ID:	0307	764-15		
Level (low/med)): LOW		Date Received:	6/18	3/2003		
% Solids:	90.3						
Concentration (Units (ug/L or m	g/kg dry weight):	MG/KG	<u> </u>			
	CAS No.	Analyte	Concentration	С	Q	м]
	7429-90-5	Aluminum	5010	1		P	1
	7440-36-0	Antimony	13.3	U	N	P	1
	7440-38-2	Arsenic	4.4			P	1
	7440-39-3	Barium	76.3	 		P	1
	7440-41-7	Beryllium	0.53	J		P	†
	7440-43-9	Cadmium	0.89	J		P	1
	7440-70-2	Calcium	4740			P	1
	7440-47-3	Chromium	10.2			P	1
	7440-48-4	Cobalt	2.7	J		P	1
'Anche'	7440-50-8	Copper	22.9		E	P	1
- Antilar	7439-89-6	Iron	7360		<u>.</u>	P	1
	7439-92-1	Lead	248			P	†
	7439-95-4	Magnesium	1510			P	1
	7439-96-5	Manganese	212			P	1
	7439-97-6	Mercury	0.11	 		CV	1
	7440-02-0	Nickel	5.4	J		P	1
	7440-09-7	Potassium	507	J	E	P	1
	7782-49-2	Selenium	7.8	ਹ	N	P	1
	7440-22-4	Silver	2.2	Ū		P	1
	7440-23-5	Sodium	125	J		P	1
	7440-28-0	Thallium	5.5	Ū		P	1
	7440-62-2	Vanadium	15.6	 		P	1
	7440-66-6	Zinc	142	†		P	1
Color Before	7440-02-0 7440-09-7 7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-62-2 7440-66-6	Nickel Potassium Selenium Silver Sodium Thallium Vanadium	5.4 507 7.8 2.2 125 5.5 15.6 142	ם ס ס		P P P P	n
Color After:	yellow	Clarity After	r: n/a		Artifacts:		
C ents:							

1A-IN

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

Hings:						ME	LMB4
Lab Name:	Ceimic Corporat	ion	Contract: 6	8-W-0	2-063		
Lab Code:	CEIMIC Case	No.: 31852	NRAS No.:		SD0	g NO.:	ME1MB0
Matrix (soi	l/water): SOIL		Lab Sample ID:	0307	64-16		
Level (low/	med): LOW		Date Received:	6/18	/2003		
% Solids:	73.3						
Concentration	on Units (ug/L or	mg/kg dry weight): MG/KG				
	CAS No.	Analyte	Concentration	С	Q	м	1
	7429-90-5	Aluminum	4550			P	1
	7440-36-0	Antimony	14.1	<u></u> <u></u>	И	P	1
	7440-38-2	Arsenic	2.6	J		P	1
	7440-39-3	Barium	60.0		<u> </u>	P	1
	7440-41-7	Beryllium	0.39	J		P	1
	7440-43-9	Cadmium	0.67	J		P	
	7440-70-2	Calcium	2960			P	1
	7440-47-3	Chromium	7.9			P	1
	7440-48-4	Cobalt	1.7	J		P	1
	7440-50-8	Copper	19.7		E	P	1
	7439-89-6	Iron	4030			P	1
	7439-92-1	Lead	179			P	1
	7439-95-4	Magnesium	942	J		P	1
	7439-96-5	Manganese	87.9			P	1
	7439-97-6	Mercury	0.091	J		CV	1
	7440-02-0	Nickel	4.3	J		P	1
	7440-09-7	Potassium	315	J	E	P	1
	7782-49-2	Selenium	8.2	Ū	N	P	1
	7440-22-4	Silver	2.4	Ū		P	1

Color Before:	brown	Clarity Before:	n/a	Texture:	medium
Color After:	yellow	Clarity After:	n/a	Artifacts:	
' lents:					
_					

90.6

5.9

10.0

104

J

σ

J

7440-23-5

7440-28-0

7440-62-2

7440-66-6

Sodium

Thallium

Vanadium

Zinc

P

P

P

1A-IN

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

_	
	ME1MB5

ab Name:	Ceimic C	orporation	Contract:	68-W-02-063		
ab Code:	CEIMIC	Case No.: 31852	NRAS No.:		SDG NO.:	ME1MB0
Matrix (soi	.1/water):	SOIL	Lab Sample ID:	030764-17		
evel (low/	'med):	LOW	Date Received:	6/18/2003		
Solids:	84.	7			· · · · ·	

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum	4820			P
7440-36-0	Antimony	13.1	Ū	N	P
7440-38-2	Arsenic	3.5			P
7440-39-3	Barium	73.7			P
7440-41-7	Beryllium	0.57	J		P
7440-43-9	Cadmium	1.1			P
7440-70-2	Calcium	4840			P
7440-47-3	Chromium	14.3			P
7440-48-4	Cobalt	2.3	J		P
7440-50-8	Copper	22.0		E	P
7439-89-6	Iron	5920		ì	P
7439-92-1	Lead	306			P
7439-95-4	Magnesium	1570			P
7439-96-5	Manganese	146			P
7439-97-6	Mercury	0.13			CV
7440-02-0	Nickel	6.1	J		P
7440-09-7	Potassium	279	J	E	P
7782-49-2	Selenium	7.7	Ū	N	P
7440-22-4	Silver	2.2	U		P
7440-23-5	Sodium	92.7	J		P
7440-28-0	Thallium	5.5	Ū		P
7440-62-2	Vanadium	13.3			P
7440-66-6	Zinc	152			P

Color Before:	brown	Clarity Before:	n/a	Texture:	medium
Color After:	yellow	Clarity After:	n/a	Artifacts:	
ents:		·····	<u>,</u>		

1A-IN

INORGANIC ANALYSIS DATA SHEET

					_	EFA SI	AMPLE NO.
Name of the state						ME	1MB6
ab Name: <u>Ce</u>	imic Corporatio	on	Contract:	68-W-0	2-063		
ab Code: CEI	MIC Case N	o.: <u>31852</u>	NRAS No.:			SDG NO.:	ME1MB0
atrix (soil/wa	ter): SOIL		Lab Sample ID:	0307	64-18		
evel (low/:ned)	: LOW		Date Received:	6/18,	/2003		
Solids:	95.8						
oncentration U	Units (ug/L or mo	g/kg dry weight):	MG/KG	<u> </u>			
	CAS No.	Analyte	Concentration	_ 	Q	м]
	7429-90-5	Aluminum	5570			P	1
	7440-36-0	Antimony	11.9	U	N	P	1
	7440-38-2	Arsenic	2.8	J		P	1
	7440-39-3	Barium	54.5	1		P	1
	7440-41-7	Beryllium	0.45	J		P	1
	7440-43-9	Cadmium	0.56	J		P	1
	7440-70-2	Calcium	3380			P	1
	7440-47-3	Chromium	9.5			P	1
	7440-48-4	Cobalt	1.7	J		P	1
	7440-50-8	Copper	17.8		E	P	1
	7439-89-6	Iron	4420			P	1
	7439-92-1	Lead	81.5	 		P	1
	7439-95-4	Magnesium	1040	1		P	1
	7439-96-5	Manganese	78.6			P	1
	7439-97-6	Mercury	0.058	J		CV	1
	7440-02-0	Nickel	4.4	J		P	1
	7440-09-7	Potassium	373	J	E	P	
	7782-49-2	Selenium	7.0	ט	N	P	
	7440-22-4	Silver	2.0	ט		P].
	7440-23-5	Sodium	148	J		P	
	7440-28-0	Thallium	0.57	J		P	
	7440-62-2	Vanadium	10.5			P	
	7440-66-6	Zinc	62.2			P	
Color Before	: brown	Clarity Befor	re: n/a		Texture:	mediu	m
Color After:	yellow	Clarity After	r: n/a		Artifact	s:	
lents:							

1A-IN

INORGANIC ANALYSIS DATA SHEET

Manual P						ME1	MB7
Lab Name:	Ceimic Corporat:	ion	Contract: 6	8-W-0	2-063		
Lab Code:	CEIMIC Case	No.: 31852	NRAS No.:		SDO	SDG NO.: ME1MB0	
Matrix (soi	il/water): SOIL		Lab Sample ID:	0307	64-19		
Level (low/	med): LOW		Date Received:	6/18	/2003		
% Solids:	95.7			0/10	72003		
		4					
Concentrati	ion Units (ug/L or :	mg/kg dry weight)	: MG/KG			_	
	CAS No.	Analyte	Concentration	C	Q	м	
	7429-90-5	Aluminum	4970	T		P	
	7440-36-0	Antimony	11.9	Ū	N	P	
	7440-38-2	Arsenic	2.2	J		P	
	7440-39-3	Barium	54.5			P	
	7440-41-7	Beryllium	0.45	J		P	
	7440-43-9	Cadmium	0.61	J		P	
	7440-70-2	Calcium	3190			P	
	7440-47-3	Chromium	8.8			P	
	7440-48-4	Cobalt	1.7	J		P	
Milde.	7440-50-8	Copper	19.6		E	P	
	7439-89-6	Iron	4590			P	
	7439-92-1	Lead	90.8			P	
	7439-95-4	Magnesium	985	J		P	
	7439-96-5	Manganese	83.7			P	
	7439-97-6	Mercury	0.073	J	_	CV	
	7440-02-0	Nickel	4.9	J		P	
	7440-09-7	Potassium	375	J	R	P	
	7782-49-2	Selenium	7.0	ט	N	P	
	7440-22-4	Silver	2.0	ט		P	
	7440-23-5	Sodium	174	J		P	
	7440-28-0	Thallium	5.0	Ū		P	,
	7440-62-2	Vanadium	9.9	J		P	
	7440-66-6	Zinc	71.6	1		P	

Color Before:	brown	Clarity Before:	n/a	Texture:	medium
Color After:	yellow	Clarity After:	n/a	Artifacts:	
ents:					
				·····	
_					

1A-IN

INORGANIC ANALYSIS DATA SHEET

- Calif						ME1ME	18
ab Name: Cei	mic Corporation	on	Contract: 6	8-W-(02-063		
ab Code: <u>CEI</u>	MIC Case N	o.: <u>31852</u>	NRAS No.:		SDO	g NO.: M1	E1MB0
atrix (soil/wa	ter): SOIL		Lab Sample ID:	0307	764-20		-
evel (low/med)	: LOW		Date Received:	6/18	3/2003		
Solids:	86.9						
- oncentration U		g/kg dry weight):	MG/KG				
	CAS No.	Analyte	Concentration	С	Q	м	
	7429-90-5	Aluminum	4920			P	
	7440-36-0	Antimony	13.4	ט	N	P	
	7440-38-2	Arsenic	10.7			P	
	7440-39-3	Barium	120	1		P	
	7440-41-7	Beryllium	0.79	J		P	
	7440-43-9	Cadmium	2.1			P	
	7440-70-2	Calcium	3620			P	
	7440-47-3	Chromium	29.0			P	
	7440-48-4	Cobalt	5.4	J		P	
4	7440-50-8	Copper	33.3		E	P	
	7439-89-6	Iron	20200			P	
	7439-92-1	Lead	238			P	
	7439-95-4	Magnesium	1300			P	
	7439-96-5	Manganese	234			P	
	7439-97-6	Mercury	0.23			CV	
	7440-02-0	Nickel	26.2			P	
	7440-09-7	Potassium	405	J	E	P	
	7782-49-2	Selenium	7.8	ס	N	P	
	7440-22-4	Silver	2.2	ס		P	
	7440-23-5	Sodium	127	J		P	
	7440-28-0	Thallium	5.6	ט		P	
	7440-62-2	Vanadium	18.2			P	
	7440-66-6	Zinc	222			P	

1A-IN

INORGANIC ANALYSIS DATA SHEET

: Corporatio				B B	3.613		
					ME.	1MC2	
	on	Contract: 6	8-W-0	2-063			
Case N	o.: <u>31852</u>	NRAS No.:			SDG NO.:	ME1MB0	
): SOIL		Lab Sample ID:	0307	64-01			
FOM		Date Received:	6/18	/2003			
78.1				·			
	g/kg dry weight):	MG/KG					
				0	м	7	
	\					╡	
			 	N		4	
	· 	·	-			-	
			 			-	
			т,			1	
			+		P	1	
		<u> </u>	 		P	1	
			 	<u></u>	P	†	
		<u> </u>	J		P	1	
	<u></u>	<u> </u>		E	P	1	
	Iron				P	1	
	Lead	124			P	1	
	Magnesium	2480	 	 -	P	†	
39-96-5	Manganese	234			P	1	
39-97-6	Mercury	1.0			CV	1	
40-02-0	Nickel	7.3	J		P	1	
40-09-7	Potassium	673	J	E	P	1	
82-49-2	Selenium	8.6	Ū	N	P	1	
40-22-4	Silver	2.5	Ū		P	1	
40-23-5	Sodium	69.9	J		P	1	
40-28-0	Thallium	6.2	Ū		P	1	
40-62-2	Vanadium	18.1			P	1	
40-66-6	Zinc	126			P		
	10W 78.1	LOW 78.1 s (ug/L or mg/kg dry weight): S No. Analyte 29-90-5 Aluminum 40-36-0 Antimony 40-38-2 Arsenic 40-39-3 Barium 40-41-7 Beryllium 40-43-9 Cadmium 40-70-2 Calcium 40-47-3 Chromium 40-48-4 Cobalt 40-50-8 Copper 39-89-6 Iron 39-92-1 Lead 39-95-4 Magnesium 39-96-5 Manganese 39-97-6 Mercury 40-02-0 Nickel 40-09-7 Potassium 82-49-2 Selenium 40-22-4 Silver 40-23-5 Sodium 40-28-0 Thallium	LOW Date Received: 78.1	LOW Date Received: 6/18 78.1 s (ug/L or mg/kg dry weight): MG/KG S No. Analyte Concentration C 29-90-5 Aluminum 4950 40-36-0 Antimony 14.8 U 40-38-2 Arsenic 7.3 40-39-3 Barium 94.5 40-41-7 Beryllium 0.58 J 40-43-9 Cadmium 1.4 40-70-2 Calcium 15000 40-47-3 Chromium 12.1 40-48-4 Cobalt 3.0 J 40-50-8 Copper 34.5 39-89-6 Iron 13800 39-92-1 Lead 124 39-95-4 Magnesium 2480 39-96-5 Manganese 234 39-97-6 Mercury 1.0 40-02-0 Nickel 7.3 J 40-22-4 Silver 2.5 U 40-23-5 Sodium 69.9 J 40-28-0 Thallium 6.2 U 40-62-2 Vanadium 18.1	LOW Date Received: 6/18/2003	LOW Date Received: 6/18/2003 78.1	

1A-IN

INORGANIC ANALYSIS DATA SHEET

						EPA SA	MPLE NO.
in 10°f					Γ	ME1	MC3
Name: <u>Cei</u>	mic Corporation	on	Contract: 6	8-W-C)2-063		
Code: CEI	MIC Case N	o.: <u>31852</u>	NRAS No.:		· · · · · · · · · · · · · · · · · · ·	SDG NO.:	ME1MB0
trix (soil/wa	ter): SOIL		Lab Sample ID:	0307	764-02		
vel (low/med)	: LOW		Date Received:	6/18	3/2003		
Solids:	89.6						
ncentration U	nits (ug/L or m	g/kg dry weight):	MG/KG				
	CAS No.	Analyte	Concentration	С	Q	м	
	7429-90-5	Aluminum	1950	Î	<u> </u>	P	
	7440-36-0	Antimony	12.8	U	N	P	
	7440-38-2	Arsenic	5.4	1		P	
	7440-39-3	Barium	28.4	J		P	
	7440-41-7	Beryllium	0.34	J		P	
	7440-43-9	Cadmium	1.4			P	
	7440-70-2	Calcium	13000			P	
	7440-47-3	Chromium	5.3			P	
	7440-48-4	Cobalt	2.0	J		P	
kiel 🎒	7440-50-8	Copper	14.7		E	P	
	7439-89-6	Iron	6830			P	
	7439-92-1	Lead	28.7			P	
	7439-95-4	Magnesium	3020			P	l
	7439-96-5	Manganese	145			P	
	7439-97-6	Mercury	0.080	J		CV	
	7440-02-0	Nickel	4.1	J		P	
	7440-09-7	Potassium	180	J	E	P	
	7782-49-2	Selenium	7.4	Ū	N	P	
	7440-22-4	Silver	2.1	Ū		P	
	7440-23-5	Sodium	47.9	J		P	
	7440-28-0	Thallium	5.3	σ		P	
	7440-62-2	Vanadium	14.1			P	
	7440-66-6	Zinc	58.7			P	

nents:

1A-IN

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

€iggg1,dP							ME	1MC4
Lab Name:	Ceimic C	orporati	on	Contract:	68-W-02	-063		
Lab Code:	CEIMIC	Case N	No.: 31852	NRAS No.:		s	DG NO.:	ME1MB0
Matrix (soi	l/water):	SOIL		Lab Sample ID:	030764	1-03		
Level (low/	med):	LOW		Date Received:	6/18/2	1003		
% Solids:	92.	. 8						
Concentrati	on Units (ug/L or m	g/kg dry weigh	mg/K	G			
	CAS N	0.	Analyte	Concentration	С	Q	м	
	7429-	90-5	Aluminum	4630			P	
	7440-	36-0	Antimony	11.8	υ	N	P	
	7440-	38-2	Arsenic	7.2			P	
	7440-	39-3	Barium	84.7			P	
	7440-	41-7	Beryllium	0.40	J		P	
	7440-	43-9	Cadmium	3.3			P	1

7440-70-2 Calcium ₽ 21600 7440-47-3 P Chromium 10.4 P 7440-48-4 Cobalt 3.0 P 7440-50-8 Copper 15.3 E P 7439-89-6 Iron 10500 P 7439-92-1 Lead 82.8 7439-95-4 2680 P Magnesium P 7439-96-5 Manganese 213 CV 7439-97-6 0.098 J Mercury P 7440-02-0 Nickel 6.0 J P 7440-09-7 Potassium 577 J E P 7782-49-2 σ Selenium 6.9 N 7440-22-4 Silver σ ₽ 2.0 P 7440-23-5 Sodium 58.6 J P Ω 7440-28-0 Thallium 4.9 ₽ 7440-62-2 Vanadium 13.5 P 7440-66-6 Zinc 100

		n/a	Texture:	medium
Color After: yellow	Clarity After:	n/a	Artifacts:	
ients:				

1A-IN

INORGANIC ANALYSIS DATA SHEET

					_		
eles.						ME	LMC5
Name: Ce	imic Corporati	.on	Contract: 6	58-W-C	2-063		
Code: CEI	IMIC Case	No.: 31852	NRAS No.:			SDG NO.:	ME1MB0
rix (soil/wa	ater): SOIL		Lab Sample ID:	0307	764-04		
el (low/med)): LOW		Date Received:	6/18	3/2003		
olids:	69.4						
- centration (Jnits (ug/L or m	ng/kg dry weight):	MG/KG				
	CAS No.	Analyte	Concentration	C	Q	м	1
	7429-90-5	Aluminum	4800			P	
	7440-36-0	Antimony	17.1	σ	N	P	1
	7440-38-2	Arsenic	26.2			P	1
	7440-39-3	Barium	103			P	i
	7440-41-7	Beryllium	1.0	J		P	
	7440-43-9	Cadmium	1.6			P	1
	7440-70-2	Calcium	11500			P	1
	7440-47-3	Chromium	9.9		-	P	1
	7440-48-4	Cobalt	4.3	J		P	1
H#*	7440-50-8	Copper	35.9	1	E	P	1
	7439-89-6	Iron	16900			P	1
	7439-92-1	Lead	95.8			P	1
	7439-95-4	Magnesium	1970			P	1
	7439-96-5	Manganese	288			P	1
	7439-97-6	Mercury	0.16			CV	1
	7440-02-0	Nickel	10.6	J		P	1
	7440-09-7	Potassium	677	J	E	P	1
	7782-49-2	Selenium	10.0	Ū	N	P	1
	7440-22-4	Silver	2.9	Ū		P	1
	7440-23-5	Sodium	82.8	J		P	1
	7440-28-0	Thallium	7.1	Ū		P	[
	7440-62-2	Vanadium	15.8	1		P	
	7440-66-6	Zinc	137	1		P	1

1A-IN

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

Marie of						MEL	MC6
Lab Name:	Ceimic Corporat	cion	Contract:	8-W-02	2-063		J
Lab Code:	CEIMIC Case	No.: 31852	NRAS No.:		SDG	NO.:	ME1MB0
Matrix (soi	l/water): SOIL		Lab Sample ID:	030764-05		_	
Level (low/	med): LOW		Date Received:	6/18/	2003		
% Solids:	70.1						
Concentrati	on Units (ug/L or	mg/kg dry weight	MG/KG	_			
	CAS No.	Analyte	Concentration	С	Q	М	
	7429-90-5	Aluminum	5680	Ī		P	
	7440-36-0	Antimony	16.9	<u></u> ד	N	P	
	7440-38-2	Arsenic	13.0			P	
	7440-39-3	Barium	92.4			P	
	7440-41-7	Beryllium	0.52	J		P	
	7440-43-9	Cadmium	1.5			P	
	7440-70-2	Calcium	13000			P	
	7440-47-3	Chromium	12.3	1 1		P	
	7440-48-4	Cobalt	3.8	J		P	
Time!	7440-50-8	Copper	24.0		E	P	
	7439-89-6	Iron	15000			P	
	7439-92-1	Lead	67.9		 	P	
	7439-95-4	Magnesium	2390			P	
	7439-96-5	Manganese	120			P	
	7439-97-6	Mercury	0.15			CV	
	7440-02-0	Nickel	8.9	J		P	
	7440-09-7	Potassium	399	J	E	P	

Color Before:	brown	Clarity Before:	n/a	Texture:	medium
Color After:	yellow	Clarity After:	n/a	Artifacts:	
ents:					
*\$()-pe- /					

7782-49-2

7440-22-4

7440-23-5

7440-28-0

7440-62-2

7440-66-6

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

υ

U

J

ד

9.9

104

7.1

18.8

81.0

N

P

₽

p

P

P

P

1A-IN

INORGANIC ANALYSIS DATA SHEET

'liante'					ſ	ME	1MC7
Lab Name: Ce	imic Corporatio	n	Contract:	68-W-0	L 12-063		
Lab Code: CE	IMIC Case N	o.: <u>31852</u>	NRAS No.:			SDG NO.:	ME1MB0
Matrix (soil/w	ater): SOIL		Lab Sample ID:	0307	64-06		
Level (low/med)): LOW		Date Received:	6/18	/2003		
% Solids:	76.1			-, -,			
Concentration !		g/kg dry weight):	MG/KG	ı			
				_		· · · · · · · · · · · · · · · · · · ·	7
	CAS No.	Analyte	Concentration	С	Q	М	
	7429-90-5	Aluminum	4240			P	
	7440-36-0	Antimony	15.6	ס	N	P	
	7440-38-2	Arsenic	24.7			P	
	7440-39-3	Barium	110			P	
	7440-41-7	Beryllium	0.44	J		P	1
	7440-43-9	Cadmium	3.3			P	1
	7440-70-2	Calcium	11800	1		P	1
	7440-47-3	Chromium	15.8			P	1
	7440-48-4	Cobalt	6.8	J		P	1
Minist P	7440-50-8	Copper	76.5		E	P	1
	7439-89-6	Iron	44200			P	
	7439-92-1	Lead	143			P	1
	7439-95-4	Magnesium	2920			P	1
	7439-96-5	Manganese	238	<u> </u>		P	
	7439-97-6	Mercury	0.18	1		CV	†
	7440-02-0	Nickel	18.2	1		P	
	7440-09-7	Potassium	357	J	E	P	
	7782-49-2	Selenium	9.1	Ū	N	P	1
	7440-22-4	Silver	2.6	U		P	-
	7440-23-5	Sodium	152	J		P	†
	7440-28-0	Thallium	6.5	Ū		P	1
	7440-62-2	Vanadium	18.3		-	P	†
	7440-66-6	Zinc	268	1		P	†
Color Before	: brown	Clarity Befor	ce: n/a		Texture:		n
nents:			· · · · · · · · · · · · · · · · · · ·				

1A-IN

INORGANIC ANALYSIS DATA SHEET

Main!						ME1	MC8
ab Name: (Ceimic Corporati	lon	Contract: 6	58-W-0	2-063		
ab Code: C	EIMIC Case	No.: 31852	NRAS No.:		SI	G NO.:	ME1MB
- atrix (soil,	/water): SOIL		Lab Sample ID:	0307	 64-07		
vel (low/me			Date Received:	C /10	/2002		
	**		Date Received:	6/18	/2003		
Solids:	90.1						
ncentration	Units (ug/L or	mg/kg dry weight	MG/KG				
	CAS No.	Analyte	Concentration	С	Q	м	
	7429-90-5	Aluminum	2450			P	
	7440-36-0	Antimony	12.9	Ū	N	P	
	7440-38-2	Arsenic	8.0			P	
	7440-39-3	Barium	37.3	J		P	
	7440-41-7	Beryllium	0.23	J		P	
	7440-43-9	Cadmium	0.97	J		P	
	7440-70-2	Calcium	11000			P	
	7440-47-3	Chromium	29.6			P	
	7440-48-4	Cobalt	1.7	J		P	
	7440-50-8	Copper	17.3		E	P	
	7439-89-6	Iron	7420			P	
	7439-92-1	Lead	30.8			P	
	7439-95-4	Magnesium	1730			P	
	7439-96-5	Manganese	77.5			P	
	7439-97-6	Mercury	0.071	J		CV	
	7440-02-0	Nickel	4.2	J		P	
	7440-09-7	Potassium	487	J	E	P	
	7782-49-2	Selenium	7.5	ט	N	P	
	7440-22-4	Silver	2.2	Ū		P	
	7440-23-5	Sodium	50.7	J		P	
	7440-28-0	Thallium	5.4	ט		P	
	7440-62-2	Vanadium	10.7	J		P	
	7440-66-6	Zinc	52.9			P	

Color After:	yellow	Clarity After:	n/a	Artifacts:	
Aents:					

1A-IN

INORGANIC ANALYSIS DATA SHEET

						ME1MC9	
ab Name: Ceir	mic Corporatio	n	Contract: 6	8 - W - C	02-063		
ab Code: CEIM	IIC Case No	31852	NRAS No.:		SI	DG NO.: ME11	1 138 0
Matrix (soil/wat	er): SOIL		Lab Sample ID:	0307	64-08	<u></u>	
evel (low/med):	LOW		Date Received:	6/18	3/2003		
: Solids:	89.1						
 concentration Un	uits (ug/L or mg	/kg dry weight):	MG/KG				
Г	CAS No.	Analyte	Concentration	_ c	Q	м	
-	7429-90-5	Aluminum	6140	<u> </u>	1	 P	
L	7440-36-0	Antimony	13.0	U	N	P	
	7440-38-0	Arsenic	32.9	+		P	
L L	7440-39-3	Barium	147	 	 	P	
<u></u>	7440-41-7	Beryllium	0.46	J		P	
<u> </u>	7440-43-9	Cadmium	7.3	╁╌		P	
-	7440-70-2	Calcium	13900			P	
}-	7440-47-3	Chromium	152	 		P	
<u> </u>	7440-48-4	Cobalt	5.1	J		P	
F	7440-50-8	Copper	70.5		E	P	
	7439-89-6	Iron	15700	 		P	
	7439-92-1	Lead	137			P	
f	7439-95-4	Magnesium	3930			P	
ļ	7439-96-5	Manganese	438	1	-	P	
Ī	7439-97-6	Mercury	0.92			CV	
Ĭ	7440-02-0	Nickel	17.3			P	
Ī	7440-09-7	Potassium	779	J	E	P	
Ţ	7782-49-2	Selenium	7.6	Ū	N	P	
Ţ	7440-22-4	Silver	2.0	J		P	
Ī	7440-23-5	Sodium	97.7	J		P	
Ī	7440-28-0	Thallium	5.4	Ū		P	
	7440-62-2	Vanadium	17.3			P	
	7440-66-6	Zinc	829			P	

1A-IN

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

ME1MD0

						L		
Lab Name:	Ceimic C	orporation	on	Contract:	68-W-C	2-063		
Lab Code:	CEIMIC	Case N	o.: 31852	NRAS No.:			SDG NO.:	ME1MB0
Matrix (so	il/water):	SOIL		Lab Sample ID:	0307	64-09	<u>.</u>	
Level (low,	/med):	LOW		Date Received:	6/18	/2003		
% Solids:	80.	. 9						
Concentrat:	ion Units (ug/L or m	g/kg dry weight)	: MG/KG	; —			
	CAS N	o.	Analyte	Concentration	C	Q	м]
	7429-	90-5	Aluminum	4180			P	
	7440-	36-0	Antimony	14.5	Ū	N	P	1
	7440-	38-2	Arsenic	10.1			P	
	7440-	39-3	Barium	65.2			P	
	7440-	41-7	Beryllium	0.50	J		P	
	7440-	43-9	Cadmium	1.2	J		P	
	7440-	70-2	Calcium	19400			P	
	7440-	47-3	Chromium	11.3			P	
	7440-	48-4	Cobalt	4.2	J		P	
	7440-	50-8	Copper	21.7		E	P	
	7439-	89-6	Iron	13100			P]
	7439-	92-1	Lead	47.7			P	
	7439-	95-4	Magnesium	3580			P	
	7439-	96-5	Manganese	249			P	
	7439-	97-6	Mercury	0.077	J		CV	
	7440-	02-0	Nickel	8.9	J		P]

7440-09-7

7782-49-2

7440-22-4

7440-23-5

7440-28-0

7440-62-2

7440-66-6

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Color Before:	brown	Clarity Before:	n/a	Texture:	medium
Color After:	yellow	Clarity After:	n/a	Artifacts:	
1ents.					
nents: - -					
_					

439

8.5

211

6.1

14.3

85.9

0.17

σ

J

J

U

₽

P

P

P

P

P

₽

E

N

1A-IN

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

ME1MD1

Lab Name:	Ceimic Corpo	ration	Contract:	68-W-02	8-W-02-063					
Lab Code:	CEIMIC C	ase No.: 31852	NRAS No.:		SD	G NO.: ME1ME	30			
Matrix (soi	.l/water): <u>SO</u>	IL	Lab Sample ID:	03076	4-10					
Level (low/	med): LO	W	Date Received:	6/18/	2003					
% Solids:	79.6									
Concentrati	on Units (ug/L	— or mg/kg dry we	ight): MG/KG	<u> </u>						
	CAS No.	Analyte	Concentration	С	Q	м				
	7429-90-	Aluminum	3390			P				
	7440-36-0	Antimony	15.1	Ū	N	P				
	7440-38-2	Arsenic	11.7			P				
	7440-39-3	Barium	67.8			P				
	7440-41-	Berylliu	um 0.32	J		P				
	7440-43-9	Cadmium	0.70	J		P				
	7440-70-2	Calcium	16600			P				
	7440-47-3	Chromium	7.6			P				
	7440-48-4	Cobalt	2.5	J		P				
	7440-50-8	Copper	11.4		E	P				
	7439-89-6	Iron	9950	1		P				

39.9

2340

198

4.8

430

8.8

2.5

61.8

6.3

10.8

48.0

J

J

J

σ

U

J

ם

J

E

N

0.089

7439-92-1

7439-95-4

7439-96-5

7439-97-6

7440-02-0

7440-09-7

7782-49-2

7440-22-4

7440-23-5

7440-28-0

7440-62-2

7440-66-6

Lead

Magnesium

Manganese

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Mercury

Nickel

Color Before: brown Clarity Before: n/a Texture: medium

Color After: yellow Clarity After: n/a Artifacts:

P

P

P

CV

P

P

P

P

P

P

P

P

1A-IN

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

Sells							ME	1MD2
Lab Name:	Ceimic C	orporation	1	Contract:	68-W-02	-063		
Lab Code:	CEIMIC	Case No	.: 31852	NRAS No.:		sd	G NO.:	ME1MB0
Matrix (so	il/water):	SOIL	 -	Lab Sample ID:	03076	4-11		
Level (low	/med):	LOW		Date Received:	6/18/	2003		
Solids:	78.	. 6						
Concentrat	ion Units (ug/L or mg	kg dry weigh	t): <u>MG/K</u>	<u>G</u>			
	CAS N	o	Analyte	Concentration	С	Q	м]
	7429-	90-5	Aluminum	3200		····	P	1
	7440-	36-0	Antimony	15.1	ס	N	P	1
	7440-	38-2	Arsenic	12.0			P	7
	7440-	39-3	Barium	87.3			P	
	7440-	41-7	Beryllium	0.28	J		P	1
	-111		1			"		

Cadmium 7440-43-9 0.97 7440-70-2 Calcium 37700 7440-47-3 Chromium 8.7 P 7440-48-4 Cobalt P 2.7 J P 7440-50-8 Copper 14.3 E P 7439-89-6 12800 Iron P 7439-92-1 Lead 47.4 7439-95-4 P Magnesium 3360 7439-96-5 Manganese 307 P CV 7439-97-6 Mercury 0.076 J P 7440-02-0 Nickel 5.1 J 7440-09-7 Potassium 321 J E ₽ P 7782-49-2 Selenium 8.8 σ N P 7440-22-4 Silver 2.5 Ω 7440-23-5 Sodium 81.0 J P P 7440-28-0 Thallium 6.3 σ 10.3 P Vanadium J 7440-62-2 P 7440-66-6 Zinc 62.3

Color Before:	brown	Clarity Before:	n/a	Texture:	medium
Color After:	yellow	Clarity After:	n/a	Artifacts:	
nents:					
Nogar -					
-	· · ·				

3-IN BLANKS

Lab Name: Ceimic Corporation Contract: 68-W-02-063

Lab Code: CEIMIC Case No.: 31852 NRAS No.: SDG NO.: ME1MB0

Preparation Blank Matrix (soil/water): SOIL

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

	Initial Calibration Blank(ug/L			Preparation Blank							
Analyte		С	1	С	2	С	3	C		С	М
Aluminum	200.0	Ū	200.0	U	200.0	υ	200.0	Ū	40.000	Ū	P
Antimony	60.0	Ū	60.0	ט	60.0	ט	60.0	ט	-0.240	J	P
Arsenic	15.0	Ū	15.0	Ū	15.0	U	15.0	Ū	3.000	ט	P
Barium	200.0	σ	1.7	J	1.8	J	200.0	ט	40.000	ט	Р
Beryllium	5.0	Ū	5.0	Ū	5.0	Ū	5.0	ט	1.000	υ	P
Cadmium	5.0	Ū	5.0	Ū	5.0	υ	0.2	J	1.000	σ	P
Calcium	5000.0	ט	5000.0	Ū	5000.0	Ū	5000.0	ט	11.318	J	P
Chromium	10.0	ט	10.0	ΰ	10.0	Ū	10.0	ਹ	2.000	Ū	P
Cobalt	0.5	J	0.6	J	50.0	ט	0.5	J	10.000	υ	P
Copper	25.0	Ū	1.4	J	5.8	J	2.5	J	5.000	Ū	P
Lipon	100.0	Ū	9.5	J	100.0	υ	13.9	J	20.000	Ū	P
Lead	10.0	Ū	10.0	Ū	10.0	Ū	10.0	Ū	2.000	Ū	P
Magnesium	5000.0	ט	51.0	J	43.0	J	61.3	J	9.876	J	P
Manganese	0.7	J	1.0	J	0.7	J	0.7	J	0.392	J	P
Nickel	40.0	Ū	40.0	Ū	40.0	Ü	40.0	ט	8.000	Ū	P
Potassium	5000.0	ט	5000.0	Ū	5000.0	ט	5000.0	ט	9.221	J	P
Selenium	35.0	ט	35.0	Ū	35.0	U	35.0	ט	7.000	Ū	P
Silver	10.0	σ	10.0	Ū	10.0	ט	10.0	Ū	2.000	σ	P
Sodium	20.4	J	23.0	J	5000.0	ט	5000.0	ט	20.029	J	P
Thallium	25.0	Ū	25.0	Ū	25.0	Ū	25.0	U	0.627	J	P
Vanadium	50.0	Ū	50.0	σ	50.0	Ū	50.0	ט	10.000	υ	P
Zinc	60.0	ט	60.0	Ū	60.0	Ū	60.0	Ū	12.000	ט	₽

3-IN BLANKS

Lab Name:

Ceimic Corporation Contract: 68-W-02-063

Lab Code: CEIMIC Case No.: 31852 NRAS No.: SDG NO.: ME1MBO

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial Calibration Blank(ug/L)	· · · · · ·	(li	Preparation Blank					
Analyte	С	1	С	2	С	3	С		С	M
Aluminum		200.0	ט	23.8	J		T			P
Antimony		60.0	ט	60.0	ט	•				P
Arsenic		15.0	Ū	15.0	บ					P
Bar:ium		200.0	ט	200.0	ט		\top			P
Beryllium		0.2	J	0.2	J					P
Cadmium		5.0	ט	5.0	ט					P
Calcium		5000.0	ט	5000.0	Ū		\top			P
Chromium		10.0	Ū	10.0	Ū	·				P
Cobalt		0.5	J	50.0	ט					P
Iron		100.0	Ū	15.9	J		$\neg \neg$			P
d		10.0	ט	10.0	σ	• •				P
Magnesium		26.0	J	63.0	J		\top			P
Manganese		0.7	J	15.0	ט		\top			P
Nickel		40.0	Ū	40.0	ט					P
Potassiwn		5000.0	ט	5000.0	ט					P
Selenium		35.0	ט	35.0	ט					P
Silver		10.0	υ	10.0	ט		\top			P
Sodium		5000.0	ט	5000.0	ט		\top			P
Thallium		25.0	Ū	25.0	ט		\top			P
Vanadium		50.0	Ū	50.0	ט				Î	P
Zinc		60.0	ט	60.0	ט					P

3-IN **BLANKS**

Lab Name:

Ceimic Corporation

Contract: <u>68-W-02-063</u>

Lab Code:

disage.

CEIMIC

Case No.: 31852

NRAS No.:

SDG NO.: ME1MB0

Preparation Blank Matrix (soil/water):

SOIL

Preparation Blank Concentration Units (ug/L or mg/kg):

MG/KG

	Initial Calibratio Blank(ug/L		Co	Preparation Blank							
Analyte		С	1	C	2	С	3	С		С	М
Mercury	0.200	Ū	0.200	ט	0.200	ט	0.200	Ū	0.100	Ū	CV

3-IN BLANKS

ab Name:				Contract:	68-W-02-063					
ab Code:	CEIMIC	Case No.: 31852		NRAS No.:		SDG NO.:	ME1MB0	_		
reparation	Blank Matrix	(soil/water):	WATER							
reparation	Blank Concent	ration Units (ug/	L or mg/k	:g):	UG/L					

	Initial Calibration Blank(ug/L)		Continuing Calibration Blank (ug/L)							Preparation Blank		
Analyte		2	1	С	2		C	3	С		С	м
Mercury			0.200	ט	1							cv

3-IN BLANKS

Lab Name: Ceimic Corporation Contract: 68-W-02-063

Lab Code: CEIMIC Case No.: 31852 NRAS No.: SDG NO.: ME1MB0

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

Analyte	Initial Calibration Blank(ug/L)			Continuing Calibration Blank (ug/L)							
		С	1	C	2	C	3	С		С	М
Antimony	60.0	Ū	60.0	Ū	60.0	ט	60.0	Ū			P
Copper	25.0	Ū	25.0	Ū	25.0	ਹ	0.8	J			P
Selenium.	-6.7	J	35.0	Ū	35.0	ט	35.0	Ū			P

A bitter of

3-IN BLANKS

Lame :	Ceimic Corporation	Contract:	68-W-02-063
--------	--------------------	-----------	-------------

Lab Code: CEIMIC Case No.: 31852 NRAS No.: SDG NO.: ME1MBO

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial Calibration Blank(ug/L)			(Preparation Blank						
Analyte		С	1	С	2	С	3	С		С	м
Antimony			60.0	ט							P
Copper		1	25.0	ט			··· <u> –</u>	\top			P
Selenium.			35.0	ט							P

4A-IN

ICP-AES INTERFERENCE CHECK SAMPLE

Lawer ame: Ceimic Corporation Contract: 68-W-02-063

Lab Code: CEIMIC Case No.: 31852 NRAS No.: SDG NO.: ME1MB0

ICP-AES Instrument ID: PE Optima ICP ICS Source: PARTA(1002)/B(0596)

Concentration Units: ug/L

4 Supple

	T	rue	Ir	itial	Found		1	inal	Found	
Analyte	Sol.A	Sol AB	Sol.A	%R	Sol AB	%R	Sol.A	%R	Sol.AB	%R
Aluminum	241700	241700	245175.00	101	246368.30	102	39975.41	99	241563.50	100
Antimony	0	568	-16.25		573.64	101	-18.06		558.13	98
Arsenic	0	94	-5.24		89.22	95	-3.32		88.07	94
Barium	0	503	2.57		508.31	101	1.48		505.36	100
Beryllium	0	467	-0.04		501.73	107	0.03		501.56	107
Cadmium	0	936	3.20		977.82	104	3.39		990.93	106
Calcium	233100	232200	240717.80	103	245251.41	106	36222.91	101	231165.50	100
Chromium	37	485	36.63	99	509.98	105	36.04	97	508.48	105
Cobalt	0	463	2.94		483.91	105	2.95		480.07	104
Cr er	0	511	4.79		506.19	99	8.53		506.36	99
INUK	93880	93680	96264.80	103	96280.60	103	94263.17	100	94931.63	101
Lead	0	52	-7.65		40.67	78	-8.77		37.71	73
Magnesium	247700	246400	244587.41	99	244619.00	99	39936.30	97	243063.30	99
Manganese	0	486	25.61		516.10	106	25.74		515.36	106
Nickel	0	912	7.51		916.15	100	7.04		917.16	101
Potassium	0		78.61		39.68		14.35		46.86	
Selenium	0	47	-0.63		42.12	90	-4.23		43.66	93
Silver	0	203	0.27		202.03	100	0.39		201.14	99
Sodium	0		630.28		634.35		633.97		635.15	
Thallium	0	92	-18.27	,	81.65	89	-14.55		85.28	93
Vanadium	0	471	11.51		492.77	105	10.48		489.08	104
Zinc	0	975	43.10		980.01	101	41.51		971.47	100

4A-IN

ICP-AES INTERFERENCE CHECK SAMPLE

Lawrane: Ceimic Corporation Contract: 68-W-02-063

Lab Code: CEIMIC Case No.: 31852 NRAS No.: SDG NO.: ME1MBO

ICP-AES Instrument ID: PE Optima ICP ICS Source: PARTA(1002)/B(0596)

Concentration Units: ug/L

	Tr	rue	3	Initial	Found		I	inal	Found	
Analyte	Sol.A	Sol AB	Sol.A	%R	Sol AB	%R	Sol.A	%R	Sol.AB	₹R
Aluminum	241700	241700					40659.00	100	241893.50	10 0
Antimony	0	568		Ī		ĺ	-15.74		554.90	98
Arsenic	0	94					-1.03		82.78	88
Barium	0	503		İ			1.40		500.02	99
Beryllium	0	467					0.14		500.05	107
Cadmium	0 [936			<u> </u>		3.58		992.76	106
Calcium	233100	232200					34460.80	101	239866.80	103
Chromium	37	485				1	35.94	97	506.26	104
Cobalt	0	463				1	2.85		477.93	103
I' ٦	93880	93680				Î	94814.10	101	94926.02	101
T. Senti	0	52					-8.94		40.35	78
Magnesium	247700	246400					40621.59	97	241557.50	98
Manganese	0	486					25.39		511.49	105
Nickel	0	912				Ī	7.09		908.95	100
Potassium	0		•	İ		1	21.74		47.31	
Selenium	0	47				Ī	0.00	-	43.32	92
Silver	0	203				T	0.41		200.51	99
Sodium	0						638.21		625.39	
Thallium	0	92		1			-14.48		77.91	85
Vanadium	0	471		1		Î	10.83		485.38	103
Zinc	0	975					41.26	-	952.56	98

4A-IN

ICP-AES INTERFERENCE CHECK SAMPLE

Legiame: Ceimic Corporation Contract: 68-W-02-063

Lab Code: CEIMIC Case No.: 31852 NRAS No.: SDG NO.: ME1MB0

ICP-AES Instrument ID: PE Optima ICP ICS Source: PARTA(1002)/B(0596)

Concentration Units: ug/L

Signi #

	Tr	:ue	Initial Found			Final Found				
Analyte	Sol.A	Sol AB	Sol.A	%R	Sol AB	%R	Sol.A	%R	Sol.AB	%R
Aluminum	241700	241700	247164.70	102	248243.80	103	42903.09	100	242999.09	101
Antimony	0	568	-20.12		570.50	100	-17.08		531.93	94
Calcium	233100	232200	252881.41	108	253389.41	109	49751.70	107	251470.50	108
Copper	0	511	4.40		513.78	101	4.44		499.70	98
Iron	93880	93680	99450.84	106	99550.02	106	96904.23	103	96792.39	103
Magnesium	247700	246400	254099.30	103	254279.91	103	47221.00	100	247197.80	100
Selenium	0	47	16.41		53.67	114	2.34		46.57	99

4A-IN

ICP-AES INTERFERENCE CHECK SAMPLE

L. ame: Ceimic Corporation Contract: 68-W-02-063

Lab Code: CEIMIC Case No.: 31852 NRAS No.: SDG NO.: ME1MBO

ICP-AES Instrument ID: PE Optima ICP ICS Source: PARTA(1002)/B(0596)

Concentration Units: ug/L

- · · · · · · · · · · · · · · ·	Tr	ue	Initial Found			·	Final Found			
Analyte	Sol.A	Sol AB	Sol.A	%R	Sol AB	%R	Sol.A	%R	Sol.AB	%R
Aluminum	241700	241700	- <u>-</u> -			<u> </u>	40692.41	100	241425.70	100
Antimony	0	568		ì		İ	-18.25		532.87	94
Calcium	233100	232200		1		i	49513.91	107	249239.00	107
Copper	0	511		i i		1	3.27		497.96	97
Iron	93880	93680				1	96341.72	103	96174.61	103
Magnesium	247700	246400		1		1	46328.09	99	245818.70	100
Selenium	0	47		Ī	<u> </u>	1	2.84		48.21	103

USEPA-CLP 5A-IN

MATRIX SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

ME)	MD2	S
-----	-----	---

Lab Name: Ceimic Corporation Contract: 68-W-02-063

Lab Code: CEIMIC Case No.: 31852 NRAS No.: SDG NO.: ME1MBO

Matrix (soil/water): SOIL Level (low/med): LOW

% Solids for Sample: 78.6

Concentration Units (ug/L or mg/kg dry weight): MG/KG

				····					
Analyte	Control Limit %R	Spiked Sample Result (SSR)	O	Sample Result (SR)	C	Spike Added (SA)	%R	Q	м
Aluminum		4136.7139		3195.1230		0.00	0		NR
Antimony	75 - 125	5.8528	J	15.1160	ט	25.19	23	N	P
Arsenic	75 - 125	22.3537		11.9504		10.08	103		P
Barium	75 - 125	601.3095		87.3185		503.87	102		P
Beryllium	75 - 125	12.8239		0.2841	J	12.60	100		P
Cadmium	75 - 125	13.9595		0.9751	J	12.60	103		P
Calcium		41368.8008		37708.8789		0.00	0		NR
Chromium	75 - 125	57.3734		8.6902		50.39	97		P
Cobalt	75 - 125	131.1313		2.6639	J	125.97	102		P
Copper	75 - 125	78.0849		14.2824		62.98	101		P
Iron		13790.6602		12814.0098		0.00	0		NR
Lead		54.3366		47.3868		5.04	138	Г	P
Magnesium		3316.0359		3357.6951		0.00	0		NR
Manganese	75 - 125	448.2223		307.1710		125.97	112		P
Mercury	75 - 125	0.7248		0.0765	J	0.64	101		CV
Nickel	75 - 125	133.1340		5.0851	J	125.97	102		P
Potassium		388.7097	J	321.4809	J	0.00	0		NR
Selenium	75 - 125	8.8177	σ	8.8177	ט	12.60	0	N	P
Silver	75 - 125	11.4800		0.0716	J	12.60	91		P
Sodium		81.7808	J	81.0398	J	0.00	0		NR
Thallium	75 - 125	9.7167		6.2983	ט	12.60	77		P
Vanadium	75 - 125	134.3795		10.3240	J	125.97	98		P
Zinc	75 - 125	182.2689		62.3443		125.97	95		P

Comments:			
	 <u> </u>	 	
*1907	 	 	

5B-IN

POST-DIGESTION SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

* Magazat P				ME1MD2A
Lab Name:	Ceimic Corporation	Contract:	68-W-02-063	

Matrix (soil/water): SOIL Level (low/med

Lab Code: CEIMIC Case No.: 31852 NRAS No.:

Level (low/med): LOW

SDG NO.: ME1MB0

Concentration Units: ug/L

The second

Analyte	Control Limit %R	Spiked Sample Result (SSR)	_	Sample Result (SR)		Spike Added (SA)			
					Ċ		%R	Q	M
Antimony		102.60		60.00	۵	120.0	86		P
Selemium	1	21.79	J	35.00	ט	70.0	31		P

Commen	ts:			
,				

6-IN

DUPLICATES

EPA	SAMPLE	NO.
М	E1MD2D	

Lab Name:	Ceimic Corpora	tion	Contract:	68-W-02-063		
Lab Code:	CEIMIC	Case No.: 31852	NRAS No.:		SDG NO.:	ME1MB0
Matrix (soi	1/water):	SOIL	Level	(low/med):	LOW	<u>-</u>
% Solids fo	r Sample:	78.6	% Sol	ids for Dupli	cate:	78.3

Concentration Units: (ug/L or mg/kg dry weight): MG/KG

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	М
Aluminum		3195.1230		3318.1399		4		P
Antimony		15.1160	ט	15.1160	Ū			P
Arsenic	3.7790	11.9504		12.9766		8		P
Barium	50.3867	87.3185		104.4083	1	18		P
Beryllium		0.2841	J	0.3067	J	8		P
Cadmium		0.9751	J	1.0294	J	5		P
Calcium		37708.8789	1	40333.6992		7		P
Chromium	2.5193	8.6902		6.7215		26		P
Cobalt		2.6639	J	2.9897	J	12		P
Copper	6.2983	14.2824		14.7775		3		P
n		12814.0098		14810.2803	Î	14		P
Lead		47.3868		54.9873		15		P
Magnesium	1259.6680	3357.6951		4175.9429		22		₽
Manganese		307.1710		312.5703		2		P
Mercury		0.0765	J	0.0871	J	13		CV
Nickel		5.0851	J	6.0539	J	17		P
Potassium		321.4809	J	362.6631	J	12		P
Selenium	}	8.8177	ט	8.8177	ט			P
Silver		2.5193	ט	0.1740	J	200		P
Sodi.um		81.0398	J	77.9913	J	4		P
Thallium		6.2983	ט	6.2983	ַ ט			P
Vanadium		10.3240	J	10.8960	J	5		P
Zinc	15.1160	62.3443		62.0014		1		P

7 - IN LABORATORY CONTROL SAMPLE

Lab Name:	Ceimic	Corporation			Contract:	68-W-0	2-063	
Lab Code:	CEIMIC	Case No.:	31852	NRAS	No:		SDG NO.:	ME1MB0
Solid LCS	Source:	LCS-S(0996)						
Aqueous LC	S Source:							

	Аq	ueous (ug/L)			Solid	(m	g/kg)		
.Analyt:e	True	Found	%R	True	Found	С	Limi	ts	%R
Aluminum		•	L	309.0	287.4		193.1	424.2	93
Antimony				213.0	159.3		129.4	297.2	75
Arsenic				930.0	965.4		613.6	1247.0	104
Barium				5.3	4.7	J	2.5	8.1	89
Beryllium				18.8	19.1		15.3	22.2	102
Cadmium			1	41.6	43.6		32.1	51.1	105
Calcium				184000.0	176235.9		42933.0	25376.0	96
Chromium				96.5	101.3	_	77.8	115.2	105
Cobalt			L	140.0	144.2		115.4	165.6	103
Copper			1	6680.0	6855.4		5727.3	7633.1	103
Iron				21000.0	20610.5		16831.3	25193.0	98
ad			1	224.0	216.0		167.6	280.5	96
Magnesium				113000.0	109880.1		97943.0	28886.0	97
Manganese				201.0	217.1		167.9	234.4	108
Nickel				56.8	57.0		43.5	70.1	100
Potassium				102.4	62.9	J	0.0	379.3	61
Selenium				37.0	33.4		17.6	56.4	90
Silver				20.9	21.9		13.2	28.5	105
Sodium			1	92.8	72.4	J	0.0	277.4	78
Thallium				38.1	30.3		24.6	51.6	80
Vanadiwn				65.8	70.1		53.0	78.6	107
Zinc			ī	175.0	162.5		127.7	222.1	93

7 - IN LABORATORY CONTROL SAMPLE

4.0								
ab Name:	Ceimic	Corporation		Contract	: 68-W-0	2-063	<u>-</u>	
ab Code:	CEIMIC	Case No.:	31852	NRAS No:		SDG NO.:	ME1MB0	
olid LCS	Source:	LCS-S(0996)						

Aqueous LCS Source:

Aqueous (ug/L)									
Analyte	True	Found	%R	True	Found	С	Limits		%R
Mercury				12.3	13.4		7.8	16.9	109

8-IN ICP-AES and ICP-MS SERIAL DILUTIONS

EPA SAMPLE NO.

ME1MC5L

Lab Name: Ceimic Corporation Contract: 68-W-02-063

Lab Code: CEIMIC Case No.: 31852 NRAS No.: SDG NO.: ME1MBO

Matrix (soil/water): SOIL Level (low/med): LOW

Concentration Units: ug/L

Siles.

Analyte	Initial Sample Result (I)	С	Serial Dilution Result (S)	С	% Difference	Q	м
Aluminum	16809.22		17595.09		5	 	P
Antimony	60.00	ן ט	300.00	Īσ		i	P
Arsenic	91.66		88.75		3		P
Barium	359.81	i i	363.62	J	1	ì	P
Beryllium	3.57	J	3.79	J	6	Ī	P
Cadmium	5.64		6.17	ј ј	9	İ	P
Calcium	40380.51		42428.73		5	ĺ	P
Chromium	34.58		33.48	J	3		P
Cobalt	14.96	J	16.35	J	9		P
Copper	125.88		144.70		15	E	P
Iron	59109.80		62403.05	_	6		P
Lead	335.92		345.55		3		P
Magnesium	6907.57		7556.89	J	9		P
Manganese	1009.49		1051.17		4		P
Nickel	37.22	J	38.11	J	2		P
Potassium	2373.01	J	3432.51	J	45	E	P
Selenium	35.00	ן ט	175.00	ט		Ï	P
Silver	10.00	ם	50.00	ם]		P
Sodium	290.27	J	25000.00	ס	100		P
Thallium	25.00	ן ט	125.00	ט			P
Vanadium	55.55		56.21	J	1		P
Zinc	478.98		497.26		4	1	P

9-IN

METHOD DETECTION LIMITS (ANNUALLY)

'Name:	Ceimic Cor	poration		Contract:	68-W-02-06	3	
Lab Code:	CEIMIC	Case No.:	31852	NRAS No.:		SDG NO.:	ME1MB0
Instrument '	Type: <u>CV</u>	Instr	ument ID:	FIMS CVAA		Date:	1/27/2003
Preparation	Method:	CS1_					
Concentratio	on Units (ug	/L or mg/kg)	: UG/	L.			

Analyte	Wave-Length /Mass	CRQL	MDL
Mercury	253.70	0.2	0.03

9-IN

METHOD DETECTION LIMITS (ANNUALLY)

I Name: Ceimic Corporation Contract: 68-W-02-063

Instrument Type: CV Instrument ID: FIMS CVAA Date: 1/27/2003

Preparation Method: CS1

Shirt P.

Concentration Units (ug/L or mg/kg): MG/KG

Analyte	Wave-Length /Mass	CRQL	MDL
Mercury	253.70	0.10	0.04

9-IN

METHOD DETECTION LIMITS (ANNUALLY)

- h Name:	Ceimic Corporation				Contract:	68-W-02-063		
Lab Code:	CEIMIC	Case	No.: 3	31852	NRAS No.:		SDG NO.	: ME1MB0
Instrument	Type:	<u>P</u>	Instrume	nt ID: P	E Optima IC	P	Date:	2/26/2003
Preparation	Method:	NP1_		_				
Concentrati	on Units	(ug/L or	mg/kg):	UG/L				

Analyte	Wave-Length /Mass	CRQL	MDL
Aluminum	308.22	200	23.51
Antimony	206.83	60	2.90
Arsenic	188.98	15	4.46
Barium	233.53	200	1.04
Beryllium	313.11	5	0.14
Cadmium	226.50	5	0.20
Calcium	315.89	5000	35.71
Chromium	267.72	10	0.66
Cobalt	228.62	50	0.45
Copper	324.75	25	0.67
Iron	273.96	100	9.44
Lead	220.35	10	1.48
Magnesium	279.08	5000	14.72
Manganese	257.61	15	0.68
Nickel	231.60	40	1.05
Potassium	766.49	5000	49.93
Selenium	196.03	35	6.04
Silver	338.29	10	0.66
Sodium	589.59	5000	19.93
Thallium	190.80	25	7.88
Vanadium	290.88	50	1.22
Zinc	206.20	60	1.26

THE P

4.466

9-IN

METHOD DETECTION LIMITS (ANNUALLY)

Lame Name:	າໝາຍ: Ceimic Corporation		Contract:	68-W-02-063			
Lab Code:	CEIMIC	Case No.:	31852	NRAS No.:	SDG	NO.: MEIMBO	
Instrument	Type: P	Instru	ment ID:	PE Optima IC	P Date:	2/26/2003	

Preparation Method: HS1

Concentration Units (ug/L or mg/kg): MG/KG

Analyte	Wave-Length /Mass	CRQL	MDL
Aluminum	308.22	40.00	4.67
Antimony	206.83	12.00	0.22
Arsenic	188.98	3.00	0.46
Barium	233.53	40.00	0.51
Beryllium	313.11	1.00	0.04
Cadmium	226.50	1.00	0.03
Calcium	315.89	1000.00	3.00
Chromium	267.72	2.00	0.28
Cobalt	228.62	10.00	0.15
Copper	324.75	5.00	0.29
Iron	273.96	20.00	9.99
Lead	220.35	2.00	0.16
Magnesium	279.08	1000.00	6.43
Manganese	257.61	3.00	0.06
Nickel	231.60	8.00	0.13
Potassium	766.49	1000.00	7.36
Selenium	196.03	7.00	0.67
Silver	338.29	2.00	0.09
Sodium	589.59	1000.00	2.92
Thallium	190.80	5.00	0.28
Vanadium	290.88	10.00	0.19
Zinc	206.20	12.00	1.52

9-IN METHOD DETECTION LIMITS (ANNUALLY)

Lab Code: CEIMIC Case No.: 31852 NRAS No.: SDG NO.: ME1MBO

Instrument Type: P Instrument ID: PE Optima ICP Date: 2/26/2003

Preparation Method: HS1

Concentration Units (ug/L or mg/kg): UG/L

Analyte	Wave-Length /Mass	CRQL	MDL
Aluminum	308.22	200	98.83
Antimony	206.83	60	5.60
Arsenic	188.98	15	6.94
Barium	233.53	200	12.03
Beryllium	313.11	5	0.28
Cadmium	226.50	5	0.31
Calcium	315.89	5000	39.12
Chromium	267.72	10	0.63
Cobalt	228.62	50	1.03
Copper	324.75	25	2.96
Iron	273.96	100	34.29
Lead	220.35	10	3.45
Magnesium	279.08	5000	11.80
Manganese	257.61	15	3.10
Nickel	231.60	40	2.61
Potassium	766.49	5000	114.52
Selenium	196.03	35	6.73
Silver	338.29	10	0.58
Sodium	589.59	5000	117.00
Thallium	190.80	25	7.44
Vanadium	290.88	50	1.94
Zinc	206.20	60	26.68

12-IN

PREPARATION LOG

Lab Name: Ceimic Corporation

Contract: 68-W-02-063

Lab Code: CEIMIC

Case No.: 31852

NRAS No.:

SDG NO.: ME1MB0

Preparation Method:

CS1

EPA Sample No.	Preparation Date	Weight (gram)	Volume (mL)
PBS01	6/19/2003	0.20	100
LCSS01	6/19/2003	0.05	100
ME1MC2	6/19/2003	0.20	100
ME1MC3	6/19/2003	0.20	100
ME1MC4	6/19/2003	0.20	100
ME1MC5	6/19/2003	0.20	100
ME1MC6	6/19/2003	0.20	100
ME1MC'7	6/19/2003	0.21	100
ME1MC3	6/19/2003	0.21	100
ME1MC9	6/19/2003	0.20	100
ME1MD0	6/19/2003	0.20	100
ME1MD:L	6/19/2003	0.20	100
ME1MD2	6/19/2003	0.20	100
ME1MD2S	6/19/2003	0.20	100
ME1MD2D	6/19/2003	0.20	100
ME1MB0	6/19/2003	0.21	100
ME1MB:L	6/19/2003	0.21	100
ME1MB2	6/19/2003	0.20	100
ME1MB3	6/19/2003	0.20	100
ME1MB4	6/19/2003	0.21	100
ME1MB5	6/19/2003	0.20	100
ME1MB6	6/19/2003	0.20	100
ME1MB7	6/19/2003	0.21	100
ME1MB8	6/19/2003	0.20	100

(C	Comments:		 		 	
		 	 		 · · · · · · · · · · · · · · · · · · ·	

12-IN

PREPARATION LOG

-

Lab Name: Ceimic Corporation Contract: 68-W-02-063

Lab Code: CEIMIC Case No.: 31852 NRAS No.: SDG NO.: ME1MBO

Preparation Method: HS1

EPA Sample No.	Preparation Date	Weight (gram)	Volume(mL)
PBS01	6/20/2003	1.00	200
LCSS01	6/20/2003	1.00	200
ME1MC2	6/20/2003	1.04	200
ME1MC3	6/20/2003	1.05	200
ME1MC4	6/20/2003	1.10	200
ME1MC5	6/20/2003	1.01	200
ME1MC6	6/20/2003	1.01	200
ME1MC7	6/20/2003	1.01	200
ME1MC8	6/20/2003	1.03	200
ME1MC9	6/20/2003	1.04	200
ME1MD0	6/20/2003	1.02	200
ME1MD1	6/20/2003	1.00	200
ME1MD2	6/20/2003	1.01	200
ME1MD2D	6/20/2003	1.01	200
ME1MD2S	6/20/2003	1.01	200
ME1MB0	6/20/2003	1.12	200
ME1MB1	6/20/2003	1.10	200
ME1MB2	6/20/2003	1.07	200
ME1MB3	6/20/2003	1.00	200
ME1MB4	6/20/2003	1.16	200
ME1MB5	6/20/2003	1.08	200
ME1MB6	6/20/2003	1.05	200
ME1MB7	6/20/2003	1.05	200
ME1MB3	6/20/2003	1.03	200

Comments:	 	 	

12-IN

PREPARATION LOG

Lab Name: Ceimic Corporation

Contract: 68-W-02-063

Lab Code: CEIMIC

Case No.: 31852

NRAS No.:

SDG NO.: ME1MB0

Preparation Method:

CS1

EPA Sample No.	Preparation Date	Weight (gram)	Volume (mL)
50	6/19/2003		100
50.2	6/19/2003		100
30.5	6/19/2003		100
31.0	6/19/2003		100
35.0	6/19/2003		100
310.0	6/19/2003		100
ICV01	6/19/2003		100
CCB01	6/19/2003		100
CRI01	6/19/2003		100
CCV01	6/19/2003		100
CCB01	6/19/2003		100
CV02	6/19/2003		100
CCB02	6/19/2003		100
CRI02	6/19/2003		100
CCV03	6/19/2003		100
CCB03	6/19/2003		100
CRI03	6/19/2003		100
CCV04	6/19/2003		100
CCB04	6/19/2003		100

 Comments:	 		 	
			 	

12-IN

PREPARATION LOG

Lab Name: Ceimic Corporation

Contract: 68-W-02-063

Lab Code: CEIMIC Case No.: 31852

NRAS No.:

SDG NO.: ME1MB0

Preparation Method: NP1

EPA Sample No.	Preparation Date	Weight (gram)	Volume (mL)
S0	7/6/2003		100
S	7/6/2003		100
ICV01	7/6/2003		100
ICB01	7/6/2003		100
CRI01	7/6/2003		100
ICSA01	7/6/2003		100
ICSAB01	7/6/2003		100
CCV01	7/6/2003		100
CCB01	7/6/2003		100
CCV02	7/6/2003		100
CCB02	7/6/2003		100
CRI02	7/6/2003		100
ICSA02	7/6/2003		100
ICSAB02	7/6/2003		100
CCV03	7/6/2003		100
CCB03	7/6/2003		100
CCV04	7/6/2003		100
CCB04	7/6/2003		100
CRI03	7/6/2003		100
ICSA03	7/6/2003		100
ICSAB03	7/6/2003		100
CCV05	7/6/2003		100
CCB05	7/6/2003		100

landa ^a	Comments:	 		 	

12-IN

PREPARATION LOG

Lab Name: Ceimic Corporation

Contract: 68-W-02-063

Lab Code: CEIMIC

Case No.: 31852

NRAS No.:

SDG NO.: ME1MB0

Preparation Method:

NP1

EPA Sample No.	Preparation Date	Weight (gram)	Volume(mL)
S0	7/7/2003		100
S	7/7/2003		100
ICV11	7/7/2003		100
ICB11	7/7/2003		100
CRI11	7/7/2003	_	100
ICSA11	7/7/2003		100
ICSAB11	7/7/2003		100
CCV11	7/7/2003		100
CCB11	7/7/2003		100
CCV12	7/7/2003		100
CCB12	7/7/2003		100
CRI12	7/7/2003		100
ICSA12	7/7/2003		100
ICSAB12	7/7/2003		100
CCV13	7/7/2003		100
CCB13	7/7/2003		100
CRI13	7/7/2003		100
ICSA13	7/7/2003		100
ICSAB13	7/7/2003		100
CCV14	7/7/2003		100
CCB14	7/7/2003		100

S exte ²⁸	Comments:		 	 .	 	 	
			 	 	 	 	

13-IN

ANALYSIS RUN LOG

Name:	Ceimic Corporatio	n		Contract:	68-W-02-063
Lab Code:	CEIMIC	Case No.:	31852	NRAS No.:	SDG No.: ME1MB0

Instrument ID: PE Optima ICP Analysis Method: P

Start Date: 7/6/2003 End Date: 7/6/2003

art Date: 7/6/2003							EI	ıa	Dat	.e:	_		/ 4	00			_									
EPA												7	Ana	ly	tes	,										
Sample NO.	D/F	Time	A L	1	A S	B A	B E	C D	C A	C R	0		F E		M G	ı ı	H G	I	K	S	A G	N A	T L	V	Z. N	C N
S0	1.0	1059	X	X	х	х	X	х	х	Х	Х	x	х	х	х	х		х	х	х	x	х	x	Х	ж	
S	1.0	1106	х	х	х	х	х	x	x	х	x	х	х	х	x	х		X	х	X	х	х	х	x	x	Γ
ICV01	1.0	1112	х	х	х	х	х	х	х	х	х	х	х	x	x	x		х	x	х	х	х	х	x	х	Γ
ICB01	1.0	1119	Х	х	х	Х	х	x	х	х	х	x	х	х	х	х		х	х	х	х	х	х	х	x	Γ
CRI01	1.0	1126	Х	х	Х	Х	х	х	x	х	х	х	х	Х	х	X		х	х	х	х	х	х	х	х	Γ
ICSA01	1.0	1133	Х	x	х	х	х	х	х	х	х	x	х	Х	х	х		х	х	х	х	х	х	x	X.	Γ
ICSAB01	1.0	1140	х	х	х	х	x	х	x	x	х	х	х	х	х	х		х	х	х	х	х	Х	Х	х	Γ
CCV01	1.0	1147	Х	х	х	х	х	х	х	х	X	х	х	х	х	х		X	х	X	х	х	х	х	x	Γ
CCB01	1.0	1154	x	х	х	Х	x	x	x	x	х	x (x (x	x	x		x	X	х	х	х	х	х	x	
PBS01	1.0	1201	х	х	х	х	х	х	x	х	x	х	х	х	х	X		х	х	х	x	х	х	x	х	
ZZZZZZ	1.0	1208																								
TCSS01	1.0	1215	x	Х	X	Х	Х	Х	X	X	х	x	х	х	х	X		Х	х	х	x	X	х	х	x	Γ
ZZZZ	1.0	1222																								Γ
ME1MC2	1.0	1229	х	х	x	х	х	х	х	х	x	х	х	х	x	х		х	х	x	Х	х	Х	х	х	
ME1.MC3	1.0	1236	х	х	Х	Х	х	х	х	x	x	х	х	Х	x	x		x	х	х	x	Х	х	х	х	Γ
ME1MC4	1.0	1242	X	x	х	х	х	x	x	х	x	x	х	Х	x	x		х	х	х	Х	x	x	х	x	
ME1MC5	1.0	1249	X	x	x	Х	X.	X	X	X	Х	x	X	x	x	X		X	x	х	x	x	X	X	x	
ME1MC5L	5.0	1256	x	х	х	х	Х	х	х	x	x	x	x	х	х	X		X	х	х	х	х	x	X	x	
ZZZZZZ	1.0	1303																								Γ
CCV02	1.0	1310	X	х	х	Х	X	x	x	x	x	х	х	Х	х	х		Х	х	Х	X	x	Х	Х	х	
CCE02	1.0	1316	x	х	Х	Х	X	X	Х	х	x	x	х	Х	х	X		х	х	х	X	х	х	X	x	
ME1MC6	1.0	1324	X	x	x	Х	Х	x	x	x	x	x	x	X	x	x		X	х	х	X	x	х	Х	x	Γ
ME1MC7	1.0	1330	x	х	х	Х	х	х	х	х	х	X	х	Х	х	x		Х	x	х	X	X	X	Х	x	
ME1MC8	1.0	1337	Х	x	х	х	х	x	x	х	х	x	x	х	х	х		х	x	х	х	X	х	Х	x	
ME1MC9	1.0	1344	x	х	х	х	Х	Х	X	x	x	х	x	$ \mathbf{x} $	x	x		x	x	х	x	х	x	x	x	Γ
ME1MD0	1.0	1351	Х	x	х	х	X	х	x	x	x	x	x	х	х	х		х	x	х	х	x	X	х	x	
ME1MD1	1.0	1357	X	х	х	Х	Х	х	Х	x	х	x	x	х	х	х		х	х	X	х	x	х	х	x	
ZZZZZZ	1.0	1404							Γ																	
CRI02	1.0	1411	Х	х	х	х	х	х	Х	x	х	х	х	X	х	х		х	x	х	x	Х	X	Х	х	
ICSA02	1.0	1419	X	х	х	х	X	x	х	х	х	x	Х	x	x	x		х	x	х	х	х	х	х	X	
ICSAB02	1.0	1425	x	х	х	х	х	х	х	x	х	x	х	х	х	x	Ţ	x	х	х	х	х	x	х	х	
CCV03	1.0	1432	х	х	х	х	х	х	х	х	х	x	х	х	x	x		x	x	x	x	х	х	x	х	_
303	1.0	1439	x	х	х	х	х	х	х	х	х	х	x	х	х	x		x	х	х	x	х	x	х	х	Γ
ME1MD2	1.0	1446	x		х	х	х	х	х	х	х	Ī	x	x	x	x		x	х		х	х	x	х	х	_
ME1MD2D	1.0	1452	х		х	Х	х	х	х	х	х	j	х	х	x	хİ		x	х		х	х	х	х	х	

13-IN

ANALYSIS RUN LOG

Name:	Ceimic Corporati	lon		Contract:	68-W-02-06	3	
Lab Code:	CEIMIC	Case No.:	31852	NRAS No.:		SDG No.:	ME1MB0
Instrument	ID: PE Optima I	CP		Analysis M	ethod: P_		

Start Date: 7/6/2003 End Date: 7/6/2003

EPA	- 4-	\	1									Ana	ly	tes	3										
Sample NO.	D/F	Time	A L		A S	B A	B	C D				F E		M G		H G	N I	K	S	A G	N A	T L	V	Z N	
ME1MD2S	1.0	1459	х		х	х	Х	х	x	х	х	X	х	Х	х		х	Х		x	х	Х	х	х	Ī
ME1MB0	1.0	1506	х	х	х	х	x	Х	х	х	х	х	x	х	х		х	Х	х	х	х	х	х	X	Γ
ME1MB1	1.0	1512	X	X	х	Х	X	х	х	х	x	х	x	x	х		Х	х	Х	х	X	х	x	х	Γ
ME1MB2	1.0	1519	X	х	x	X	Х	x	X	х	X	х	X	x	Х		X	Х	X	X	X	х	x	X	Γ
ME1MB3	1.0	1525	X	Х	Х	Х	X	х	х	х	х	х	x	x	х		X	Х	х	х	X	Х	Х	X	Γ
ME1MB4	1.0	1532	X	х	x	Х	X	x	X	x	x	х	X	X	X		х	X	Х	X	x	х	x	X	Γ
ME1MB5	1.0	1539	x	х	x	Х	х	X	x	х	X	Х	х	X	х		x	х	х	x	X	Х	х	X	I
ZZZZZZ	1.0	1545																							Ι
CCV04	1.0	1552	X	х	х	х	X	х	X	x	X	x	X	X	х		X	x	Х	Х	Х	Х	x	X	I
CCB04	1.0	1559	X	x	X	Х	X	X	x	X	x	x	х	X	х		Х	X	X	x	x	x	x	x	\prod
ME1MB6	1.0	1606	X	х	х	X	X	х	х	x	X	X	X	Х	X		X	X	X	Х	X	х	x	X	I
ME1MB7	1.0	1613	X	х	х	Х	X	x	X	x	х	х	X	X	X		X	х	X	x	X	х	x	X	Γ
1.MB8	1.0	1619	X	х	X	Х	Х	X	x	х	X	х	x	X	X		X	Х	X	х	X	x	х	X	I
ZZZZZZ	1.0	1626																						Γ	Γ
ZZZZZZ	1.0	1633																					\Box		Γ
ZZZZZZ	1.0	1640																					Г		Γ
22222	1.0	1647																						Г	Γ
CRI03	1.0	1653	X	х	Х	х	Х	x	х	Х	x	x	x	x	x		х	x	x	X	x	X	x	x	Γ
ICSA03	1.0	1700	х	х	х	х	х	х	х	х	х	х	x	х	х		х	х	х	х	х	х	x	X	Γ
ICSAB03	1.0	1707	Х	х	х	х	X	x	х	x	х	x	х	x	x		х	х	x	х	х	х	х	х	Γ
CCV05	1.0	1714	x	Х	Х	х	x	х	x	х	Х	Х	X	х	Х		Х	X	X	X	Х	х	X	X	Γ
CCB05	1.0	1720	x	х	x	x	х	x	x	х	x	х	х	x	x		х	x	x	х	х	x	х	х	Ť

WHITE

13-IN

ANALYSIS RUN LOG

Name:	Ceimic	Corporat	ion		Contract:	68-W-02-0	63	
Lab Code:	CEIM	<u></u>	Case No.:	31852	NRAS No.:		SDG No.:	ME1MB0
Instrument	ID: I	PE Optima	ICP		Analysis Me	ethod: P		

End Date: 7/8/2003 Start Date: 7/7/2003

1.0 0141

1.0 0148

1.0 0202

0155

1.0

CCV13

313

ZZZZZZ

ZZZZZZ

х

х

	PA	- /-	m.:											Ana	ly												
;sam No	mple O.	D/F	Time	A L		A S	B A	B E	C D	C A	C R	0 0	G D	F	P B	M G		H G	N	K	S E	A G	N A	T L	v	Z. N	
S0		1.0	2211		х								X								Х						Γ
S		1.0	2219		х								x								х						Γ
ICV11		1.0	2225		х								x								х						Γ
ICB11		1.0	2232		х								x								х						Γ
CRII1		1.0	2239		x								x								х						Γ
ICSA11		1.0	2246	x	х					х			x	х		x					х						Γ
ICSAB11		1.0	2253	х	x					x			x	х		х					х		\Box				Γ
CCV11	· · ·	1.0	2300		x								x								х						Γ
CCB11		1.0	2306		x								x								х						Ĺ
ME: MD2		1.0	2313		х								x								х						T
ME1MD2D		1.0	2320		х								x								х						Γ
ME1MD2S	.	1.0	2326		х								x								х						Γ
1MB0	· ·	1.0	2333	Π									X												П		Ť
ME1MB1		1.0	2339										х														Ť
ME1MB2		1.0	2346										х								П				П		Ť
ME1MB3		1.0	2352										х														Ī
ME1MB4		1.0	2359										x														Γ
ME1MB5		1.0	0006										x								П				П		Ī
ZZZZZZ		1.0	0012	Π																							T
CCV12		1.0	0019	Γ	х								x								х		Ī				T
CCB12	:	1.0	0026	Ì	х								х								х				П		Γ
ME1MB6		1.0	0033		ļ				Γ	<u> </u>			х								П				\Box		Γ
MELMB7		1.0	0040	İ									х								П						Ĺ
ME1MB8		1.0	0046										х								П		Ī				Γ
ZZZZZZ		1.0	0053																		ΠÌ		T		П		Ī
ZZZZZZ		1.0	0100											İ			Ì						T		Πİ		Γ
ZZZZZZ		5.0	0107														T			T	Π		T		Πİ		ſ
ZZZZZZ		1.0	0114										Ì	Ì	j		j	j	Ī	\Box	T	寸	寸		T	T	Ī
CRE12	······································	1.0	0121		х								х	T	j	j	Ì	j		寸	х	Ť	寸		Ť	T	Ī
ICSA12		1.0	0128	х	х					х			хj	Хİ	i	хį	i	i	i	ij	x	T	Ť	i	寸	ij	ſ
ICSAB12		1.0	0135	х	х					х		ij	х	x	- i	х	i	Ť	ᅥ	寸	x	寸	寸	Ť	寸	Ť	Γ

X

X

x

x

13-IN

ANALYSIS RUN LOG

Name:	Ceimic Corporati	lon		Contract: <u>68-W-02</u>	-063
Lab Code:	CEIMIC	Case No.:	31852	NRAS No.:	SDG No.: ME1MB0
Instrument	ID: PE Optima	ICP		Analysis Method:	P
Start Date	e: <u>7/7/2003</u>			End Date: <u>7/8/200</u>	3
	EPA			Analy	tes

EPA		1 .											Ana	ıly	te	5									
Sample NO.	D/F	Time	A L	S B	A S	B A	B E	C D	1 1	C R	0	1 1	F	P B	ł	M N	H G	I		S E	A G	N A	V	Z N	C N
ZZZZZZ	1.0	0208																							
ZZZZZZ	1.0	0215																	Γ						
ME1MD2A	1.0	0221		х																х					
ZZZZZZ	1.0	0228																							
ZZZZZZ	1.0	0234																							
CRI13	1.0	0242		х								х							Π	х					
ICSA13	1.0	0248	х	х					х			х	х		х				Π	х					
ICSAB13	1.0	0255	x	х					х			х	х		х				Π	Х					
CCV14	1.0	0302		х								х							Π	х					
CCB14	1.0	0308		х								х								х					

4 Mile Radius Map

SDMS US EPA Region V

Imagery Insert Form

Document ID:

289891		

Some images in this document may be illegible or unavailable in SDMS. Please see reason(s) indicated below:

	Specify Type of Document(s) / Comments:
 	
	OLOR or RESOLUTION variations.
	noted, these pages are available in monochrome. The source document page(s) is more legible that nal document is available for viewing at the Superfund Records Center.
	Specify Type of Document(s) / Comments:
Confidential Busin	and Information (CDI)
	ess information (CD1).
This document con	tains highly sensitive information. Due to confidentiality, materials with such information are no
This document con	
This document con	tains highly sensitive information. Due to confidentiality, materials with such information are no contact the EPA Superfund Records Manager if you wish to view this document.
This document con	tains highly sensitive information. Due to confidentiality, materials with such information are no
This document con	tains highly sensitive information. Due to confidentiality, materials with such information are no contact the EPA Superfund Records Manager if you wish to view this document.
This document con	tains highly sensitive information. Due to confidentiality, materials with such information are no contact the EPA Superfund Records Manager if you wish to view this document.
This document con	tains highly sensitive information. Due to confidentiality, materials with such information are no contact the EPA Superfund Records Manager if you wish to view this document.
This document con	tains highly sensitive information. Due to confidentiality, materials with such information are not contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments:
This document con in SDMS. You may Unscannable Mate Oversized X	tains highly sensitive information. Due to confidentiality, materials with such information are not contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: crial: or Format.
This document con in SDMS. You may Unscannable Mate Oversized X Due to certain scar	tains highly sensitive information. Due to confidentiality, materials with such information are not contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: erial: or Format. nning equipment capability limitations, the document page(s) is not available in SDMS. The original contact the information are not provided to the provided the provided to the provided the provided to
This document con in SDMS. You may Unscannable Mate Oversized X Due to certain scar	tains highly sensitive information. Due to confidentiality, materials with such information are not contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: crial: or Format. nning equipment capability limitations, the document page(s) is not available in SDMS. The originable for viewing at the Superfund Records center.
This document con in SDMS. You may Unscannable Mate Oversized X Due to certain scar	tains highly sensitive information. Due to confidentiality, materials with such information are not contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: erial: or Format. nning equipment capability limitations, the document page(s) is not available in SDMS. The original contact the information are not provided to the provided the provided to the provided the provided to
Unscannable Mate Oversized X Due to certain scan document is available	tains highly sensitive information. Due to confidentiality, materials with such information are not contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Prial: or Format. Inning equipment capability limitations, the document page(s) is not available in SDMS. The originable for viewing at the Superfund Records center. Specify Type of Document(s) / Comments:
Unscannable Mate Oversized X Due to certain scan document is available.	tains highly sensitive information. Due to confidentiality, materials with such information are not contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: crial: or Format. nning equipment capability limitations, the document page(s) is not available in SDMS. The originable for viewing at the Superfund Records center.
Unscannable Mate Oversized X Due to certain scan document is available.	tains highly sensitive information. Due to confidentiality, materials with such information are not contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Prial: or Format. Inning equipment capability limitations, the document page(s) is not available in SDMS. The originable for viewing at the Superfund Records center. Specify Type of Document(s) / Comments:
Unscannable Mate Oversized X Due to certain scan document is available.	tains highly sensitive information. Due to confidentiality, materials with such information are not contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Prial: or Format. Inning equipment capability limitations, the document page(s) is not available in SDMS. The originable for viewing at the Superfund Records center. Specify Type of Document(s) / Comments:
Unscannable Mate Oversized X Due to certain scan document is available APPENDIX C: 4	tains highly sensitive information. Due to confidentiality, materials with such information are not contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Prial: or Format. Inning equipment capability limitations, the document page(s) is not available in SDMS. The originable for viewing at the Superfund Records center. Specify Type of Document(s) / Comments:

Page 159 of 166

Sensitive Environment Information

Think!

Frank O'Bannon, Governor Larry D. Macklin, Director Division of Nature Preserves 402 W. Washington Street, Rm. W267 Indianapolis, IN 46204-2739

March 25, 2002

Mr. Dan Chesterson IDEM/OLQ Brownfields Program 100 N. Senate Avenue PO Box 6015 Indianapolis, IN 46206-6015

Dear Mr. Chesterson:

I am responding to your request for information on the endangered, threatened, or rare (ETR) species, high quality natural communities, and natural areas documented from a brownfields project area, Lasalle Park, South Bend, Indiana. The Indiana Natural Heritage Data Center has been checked and following you will find information on the ETR species and significant areas documented from the project area.

1. There is a historical record from 1929 of the state threatened plant *Lathyrus venosus*, smooth veiny pea, documented in Section 3, Township 37 North, Range 2 East.

The information I am providing does not preclude the requirement for further consultation with the U.S. Fish and Wildlife Service as required under Section 7 of the Endangered Species Act of 1973. You should contact the Service at their Bloomington, Indiana office.

U.S. Fish and Wildlife Service 620 South Walker St. Bloomington, Indiana 47403-2121 (812)334-4261

At some point, you may need to contact the Department of Natural Resources' Environmental Review Coordinator so that other divisions within the department have the opportunity to review your proposal. For more information, please contact:

RECEIVED

MAR 2 2002

DEPARTMENT OF THE WESSARAM JATHEMMORIVAE THE YOUR CAND TO EDIEVO Larry Macklin, Director
Department of Natural Resources
attn: Stephen H. Jose
Environmental Coordinator
Division of Fish and Wildlife
402 W. Washington Street, Room W273
Indianapolis, IN 46204
(317)232-4080

Please note that the Indiana Natural Heritage Data Center relies on the observations of many individuals for our data. In most cases, the information is not the result of comprehensive field surveys conducted at particular sites. Therefore, our statement that there are no documented significant natural features at a site should not be interpreted to mean that the site does not support special plants or animals.

Due to the dynamic nature and sensitivity of the data, this information should not be used for any project other than that for which it was originally intended. It may be necessary for you to request updated material from us in order to base your planning decisions on the most current information.

Thank you for contacting the Indiana Natural Heritage Data Center. You may reach me at (317)232-8059 of you have any questions or need additional information.

Sincerely,

Ronald P. Hellmich

Indiana Natural Heritage Data Center

15 Mile Surface Water Pathway Map

SDMS US EPA Region V

Imagery Insert Form

Document ID:

289891		

Some images in this document may be illegible or unavailable in SDMS. Please see reason(s) indicated below:

	Specify Type of Document(s) / Comments:
	COLOR or RESOLUTION variations. ise noted, these pages are available in monochrome. The source document page(s) is more legible that
	original document is available for viewing at the Superfund Records Center.
	Specify Type of Decument(s) / Comments
	Specify Type of Document(s) / Comments:
Confidential Br	· · · · · · · · · · · · · · · · · · ·
	usiness Information (CBI).
This document	contains highly sensitive information. Due to confidentiality, materials with such information are no
This document	
This document	contains highly sensitive information. Due to confidentiality, materials with such information are no
This document	contains highly sensitive information. Due to confidentiality, materials with such information are no may contact the EPA Superfund Records Manager if you wish to view this document.
This document	contains highly sensitive information. Due to confidentiality, materials with such information are no may contact the EPA Superfund Records Manager if you wish to view this document.
This document	contains highly sensitive information. Due to confidentiality, materials with such information are no may contact the EPA Superfund Records Manager if you wish to view this document.
This document in SDMS. You	contains highly sensitive information. Due to confidentiality, materials with such information are no may contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments:
This document in SDMS. You Unscannable M	contains highly sensitive information. Due to confidentiality, materials with such information are no may contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments:
This document in SDMS. You Unscannable Moversized X Due to certain	contains highly sensitive information. Due to confidentiality, materials with such information are no may contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Material: or Format. scanning equipment capability limitations, the document page(s) is not available in SDMS. The orig
This document in SDMS. You Unscannable Moversized X Due to certain	contains highly sensitive information. Due to confidentiality, materials with such information are no may contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Material: or Format.
This document in SDMS. You Unscannable Moversized X Due to certain	contains highly sensitive information. Due to confidentiality, materials with such information are no may contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Material: or Format. scanning equipment capability limitations, the document page(s) is not available in SDMS. The orig
This document in SDMS. You Unscannable Moversized X Due to certain document is a	Contains highly sensitive information. Due to confidentiality, materials with such information are not may contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Material: or Format. scanning equipment capability limitations, the document page(s) is not available in SDMS. The original vailable for viewing at the Superfund Records center. Specify Type of Document(s) / Comments:
This document in SDMS. You Unscannable Moversized X Due to certain document is a	Contains highly sensitive information. Due to confidentiality, materials with such information are not may contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Material: or Format. scanning equipment capability limitations, the document page(s) is not available in SDMS. The original valiable for viewing at the Superfund Records center.
This document in SDMS. You Unscannable Moversized X Due to certain document is a	Contains highly sensitive information. Due to confidentiality, materials with such information are not may contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Material: or Format. scanning equipment capability limitations, the document page(s) is not available in SDMS. The original vailable for viewing at the Superfund Records center. Specify Type of Document(s) / Comments:
This document in SDMS. You Unscannable Moversized X Due to certain document is a	Contains highly sensitive information. Due to confidentiality, materials with such information are not may contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Material: or Format. scanning equipment capability limitations, the document page(s) is not available in SDMS. The original vailable for viewing at the Superfund Records center. Specify Type of Document(s) / Comments:
Unscannable Moversized X Due to certain document is a	Contains highly sensitive information. Due to confidentiality, materials with such information are not may contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Material: or Format. scanning equipment capability limitations, the document page(s) is not available in SDMS. The original vailable for viewing at the Superfund Records center. Specify Type of Document(s) / Comments:

Page 166 of 166